ФЕДЕРАЛЬНОЕ АГЕНТСТВО ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА
ИРКУТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ

СИНТЕЗ И АНАЛИЗ КОМБИНАЦИОННЫХ УСТРОЙСТВ
В СИСТЕМАХ ОБЕСПЕЧЕНИЯ ДВИЖЕНИЯ ПОЕЗДОВ

Учебно-методическое пособие

Иркутск 2017
Составители:
В. А. Алексеенко, канд. техн. наук, доцент кафедры автоматики, телемеханики и связи;
М. В. Копанев, канд. техн. наук, доцент кафедры автоматики, телемеханики и связи;
В. А. Целищев, доцент кафедры автоматики, телемеханики и связи

Рецензенты:
Е. Г. Солдатенков, главный инженер службы автоматики и телемеханики Восточно-Сибирской дирекции инфраструктуры – структурного подразделения Центральной дирекции инфраструктуры – филиала ОАО «РЖД»;
О. В. Арсентьев, канд. техн. наук, доцент, заведующий кафедрой электропривода и электрического транспорта ИРНИТУ

Синтез и анализ комбинационных устройств в системах обеспечения движения поездов: учеб.-метод. пособие / В. А. Алексеенко, М. В. Копанев, В. А. Целищев. – Иркутск: ИрГУПС, 2017. – 100 с.

В учебно-методическом пособии рассматриваются вопросы построения кодирующих и декодирующих устройств систем телемеханики и исследования корректирующих способностей заданного кода и декодирующего устройства.
Предназначено в качестве руководства при выполнении дипломного проектирования и курсовой работы по дисциплине «Теоретические основы автоматики и телемеханики» для студентов специальности 23.05.05 «Системы обеспечения движения поездов».

© Иркутский государственный университет путей сообщения, 2017
ОГЛАВЛЕНИЕ

Предисловие .. 5
Введение .. 6

1. КОДЫ И КОДИРОВАНИЕ ... 7
 1.1. Основные понятия .. 7
 1.2. Цифровые коды .. 10
 1.2.1. Запись кодовых комбинаций в виде многочлена .. 10
 1.2.2. Сложение многочленов .. 10
 1.2.3. Умножение многочленов ... 11
 1.2.4. Деление многочленов .. 12
 1.2.5. Перенос слагаемых в многочленах ... 12
 1.2.6. Матричная запись кодовых комбинаций ... 13
 1.2.7. Графическое представление кода .. 13
 1.2.8. Геометрическая модель кода .. 14
 1.2.9. Классификация двоичных кодов ... 16
 1.2.10. Основные характеристики двоичных кодов ... 17
 1.3. Простые двоичные коды .. 18
 1.4. Оптимальные коды .. 20

2. КОРРЕКТИРУЮЩИЕ КОДЫ ... 23
 2.1. Основные понятия .. 23
 2.2. Коды с обнаружением ошибок ... 26
 2.2.1. Код с постоянным весом (код на одно сочетание) .. 26
 2.2.2. Распределительный код C_n^1 ... 26
 2.2.3. Код с проверкой на четность ... 27
 2.2.4. Код с проверкой на нечетность .. 27
 2.2.5. Код с двумя проверками на четность ... 28
 2.2.6. Код с двумя проверками на четность ... 28
 2.2.7. Код с повторением .. 28
 2.2.8. Код с числом единиц, кратным трем .. 29
 2.2.9. Инверсный код (код с повторением инверсии) .. 30
 2.2.10. Корреляционный код (код с удвоением числа элементов) ... 31
 2.3. Коды с обнаружением и исправлением ошибок .. 33
 2.3.1. Систематические коды .. 33
 2.3.2. Код Хемминга .. 36
 2.3.3. Циклические коды .. 40
 2.4. Частотные коды ... 43

3. КОМБИНАЦИОННЫЕ УСТРОЙСТВА КОДИРОВАНИЯ И ДЕКОДИРОВАНИЯ КОРРЕКТИРУЮЩИХ КОДОВ ... 45
 3.1. Кодер и декодер кода с защитой на четность .. 45
 3.2. Кодер и декодер кода с постоянным весом ... 48
 3.3. Кодер и декодер кода с двумя проверками на четность ... 49
 3.4. Кодер и декодер кода с повторением ... 51
 3.5. Кодер и декодер кода с числом единиц, кратным трем .. 54
 3.6. Кодер и декодер инверсного кода ... 56
 3.7. Кодер и декодер корреляционного кода .. 59
 3.8. Кодер и декодер кода Бергера ... 61
3.9. Кодирующее и декодирующее устройства систематического кода 63
3.10. Кодирующее и декодирующее устройство кода Хемминга 65
4. ПЕРЕДАЧА ИНФОРМАЦИИ ПРИ ВОЗДЕЙСТВИИ ПОМЕХ 68
 4.1. Структурная схема передачи информации .. 68
 4.2. Помехи и ошибки в каналах связи ... 69
 4.3. Передача информации по каналу без помех 73
 4.4. Передача информации по каналу с помехами 75
5. СИНТЕЗ И АНАЛИЗ КОМБИНАЦИОННЫХ УСТРОЙСТВ
В СИСТЕМАХ ОБЕСПЕЧЕНИЯ ДВИЖЕНИЯ ПОЭЗДОВ 76
 5.1. Общие положения о выполнении курсовой работы 76
 5.2. Оформление курсовой работы .. 76
 5.3. Задание на курсовую работу .. 77
 5.4. Исходные данные и порядок выполнения курсовой работы 77
 5.5. Краткие теоретические сведения .. 79
 5.6. Методика выполнения курсовой работы .. 86
 5.6.1. Построение кода для передаваемого сообщения 86
 5.6.2. Расчет корректирующих способностей заданного кода 88
 5.6.3. Структурный синтез кодирующего устройства (кодера) 88
 5.6.4. Структурный синтез декодирующего устройства (декодера) 92
 5.6.5. Исследование кодера и корректирующих способностей декодера 94
 5.7. Расчет вероятности ошибок при передаче сообщений 94
 5.7.1. Передача информации по каналам с независимыми ошибками 94
 5.7.2. Передача информации по каналам связи с пакетным распределением ошибок ... 97
Заключение ... 98
Библиографический список ... 99
ПРЕДЕСЛОВИЕ

Автоматизация процессов управления есть необходимый элемент современного производства. Ее широкое внедрение обеспечивает повышение производительности труда и улучшение качества продукции. Развитие целых отраслей современной науки и техники принципиально невозможно без использования средств автоматизации.

На железнодорожном транспорте, как и во всех отраслях народного хозяйства, широко применяется автоматизация и телемеханизация производственных процессов и, прежде всего, процессов управления движением поездов.

Работа систем железнодорожной автоматики и телемеханики протекает в сложных эксплуатационных условиях, определяемых высокими скоростями и большой интенсивностью движения поездов, а также часто трудными климатическими условиями. К специфическим условиям работы этих систем относится также то, что они, обеспечивая безопасность движения поездов, используют в качестве каналов связи рельсовые цепи и испытывают влияние помех большого уровня от токов электрической тяги и др.

Целью освоения учебной дисциплины «Теоретические основы автоматики и телемеханики» является формирование у студентов знаний принципов построения автоматических и телемеханических систем железнодорожного транспорта.

Задача дисциплины – изучение основных понятий и математических методов построения автоматических и телемеханических систем управления.

Содержание дисциплины «Теоретические основы автоматики и телемеханики» базируется непосредственно на знаниях по дисциплинам «Электроника», «Теоретические основы электротехники», «Теория дискретных устройств», «Теория автоматического управления».

Процесс освоения данной дисциплины сопровождается формированием следующих компетенций:

– способность применять знания в области электротехники и электроники для разработки и внедрения технологических процессов, технологического оборудования и технологической оснастки, средств автоматизации и механизации;

– способность использовать в профессиональной деятельности современные информационные технологии, изучать и анализировать информацию, технические данные, показатели и результаты работы систем обеспечения движения поездов, обобщать и систематизировать их, проводить необходимые расчеты.

Дисциплина «Теоретические основы автоматики и телемеханики» служит основой для практического освоения существующих и перспективных систем автоматики и телемеханики.
ВВЕДЕНИЕ

В настоящее время на железнодорожном транспорте всё более широкое применение получают цифровые системы автоматики и телемеханики, в которых информация передается в виде определенной кодовой комбинации [1]. Цифровые методы передачи информации по сравнению с другими обладают рядом преимуществ, пример:

а) прием сигнала сводится к обнаружению логических сигналов «1» или «0»;

б) сообщения в цифровой форме относительно легко подвергаются обработке, записи, коммутации и регистрации;

в) возможна многократная передача данных без накопления ошибок;

г) применение помехоустойчивого кодирования позволяет значительно увеличить достоверность передачи телемеханических сообщений;

е) улучшается использование канала связи в случае применения специальных кодов, статистически согласованных с передаваемыми сообщениями.

Под кодированием в широком смысле понимается переход от одного способа задания информации к другому, допускающий восстановление исходной информации.

В данном учебно-методическом пособии большое внимание уделено теоретическим основам построения кодовых комбинаций, а также преобразованию кода передаваемой и обрабатываемой информации с сохранением его числового эквивалента.

Преобразование может осуществляться программным или аппаратным способом. Программный способ отличается универсальностью и высокой производительностью, но требует определенных затрат машинного времени и дополнительно загружает память ЭВМ, что отрицательно сказывается на выполнении машиной других операций. В последние годы большое значение придается аппаратурному (схемотехническому) способу преобразования кодов, что связано в первую очередь с разработкой специализированных микросхем, а также интегральных схем среднего и большого уровней интеграции. В разделах пособия основное внимание уделяно именно этому перспективному способу преобразования кода в код.

Материалы данного пособия будут полезны студентам при выполнении курсового и дипломного проектирования.
1. КОДЫ И КОДИРОВАНИЕ

1.1. Основные понятия

В технике особую роль занимают преобразования дискретной информации, так как многочисленные исследования показали, что в реальных условиях непрерывный сигнал без потерь для качественных характеристик функционирования системы может быть заменен дискретным сигналом. Дискретные представления информации широко распространены при передаче и обработке информации. Формой представления информации является сообщение [3].

Кодирование — преобразование дискретного сообщения в линейный сигнал, осуществляемое по определенному правилу. Восстановление дискретного сообщения по сигналу на выходе канала связи, осуществляемое с учетом правил кодирования, называется декодированием.

Кодовая последовательность (комбинация) — представление дискретного сигнала в виде конкретной совокупности импульсов, образующих линейный сигнал.

Код — это множество кодовых комбинаций, применяемых для передачи, обработки, хранения информации.

Целями кодирования сообщений обычно являются:
- а) передача по общему каналу связи нескольких сообщений для кодового разделения сигналов;
- б) повышение помехоустойчивости и достоверности передаваемых сообщений;
- в) уменьшение избыточности, т. е. более экономное использование полосы частот канала связи;
- г) уменьшение объемов передаваемой и обрабатываемой информации;
- д) обеспечение защиты информации при передаче и хранении;
- е) преобразование любой информации независимо от ее происхождения и назначения в единую систему символов;
- ж) преобразование исходной информации в соответствие с характеристиками канала связи.

Любая кодовая комбинация содержит определенный набор элементов (символов) кода, весь набор которых образует алфавит кода. Для двоичного кода алфавит состоит из двух символов («0» и «1»), для троичного их число увеличивается до трех («0», «1», «2»), а в десятичном — оно равно десяти. Таким образом, основание кода \(k \) — это количество признаков или число букв (цифр). Кодовая комбинация, составленная из \(n \) символов (элементов), называется кодовым словом (кодовым блоком), имеющим длину \(n \) или число разрядов \(n \). Если длина всех кодовых комбинаций одинакова, то такие коды называют равномерными (комплектными). Напри-
мер, код 001, 011, 101 является комплектным, а код 1, 11, 101 – некомплектным. В системах железнодорожной автоматики и телемеханики обычно используют только равномерные коды.

В технических информационных устройствах элементами могут служить одиночные импульсы постоянного тока (видеоимпульсы), переменного тока (радиоимпульсы), паузы между импульсами.

Кроме указанных характеристик, коды имеют и другие характеристики, которые приведены на рис. 1.1. Для передачи различных символов, составляющих массив кода, могут использоваться импульсы с различными признаками, представленные в табл. 1.1.

Передачу кодовых комбинаций можно осуществить последовательно или параллельно, т. е. одновременно во времени. В последнем случае передача должна осуществляться по нескольким проводам или с использованием частотных признаков для разделения сигналов [2; 5].

![Характеристики кодов](image)

Рис. 1.1. Классификация характеристик кода

Таблица 1.1

<table>
<thead>
<tr>
<th>Символ</th>
<th>Амплитудные</th>
<th>Временные</th>
<th>Полярные</th>
<th>Частотные</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

На рис. 1.2 показана последовательная передача кодовой комбинации 101011001 видеоимпульсами, а на рис. 1.3 – передача этой же комбинации
радиоимпульсами. В обоих случаях передача осуществляется с пассивными паузами между элементами кодовых комбинаций.

Для передачи кодовых комбинаций параллельно во времени каждому разряду присваивается своя частота (табл. 1.2). Однако признаки у каждого разряда должны быть не частотными, а амплитудными или временными.

![Рис. 1.2. Последовательная передача кодовой комбинации видеоимпульсами](image)

![Рис. 1.3. Последовательная передача кодовой комбинации радиоимпульсами](image)

Таблица 1.2

<table>
<thead>
<tr>
<th>Номер разряда</th>
<th>Частота</th>
<th>Номер кодовой комбинации и время её передачи</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>f_1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>f_2</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>f_3</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>f_4</td>
<td>1</td>
</tr>
</tbody>
</table>

Первая кодовая комбинация 1001 передается в течение первого интервала времени t_1 частотами f_1 и f_4, посылаемыми одновременно, а вторая – 1110 передается в течение второго интервала времени одновременной посылкой частот f_1, f_2, и f_3.

По способу образования кодовых комбинаций коды разделяются на числовые и нечисловые. В числовых кодах, получивших название цифровых, кодовые комбинации образуют ряд возрастающих по весу чисел, определяемых системой счисления. Они применяются в системах измере-
ний, контроля, ЭВМ и т. д. Нечисловые (невзвешенные) коды не имеют систем счисления и применяются в системах управления и телеуправлении, где команды и сигналы независимы [2].

1.2. Цифровые коды

В основу правил соответствия кодовых комбинаций числам цифровых кодов положены математические системы счисления, поэтому данные коды называются также арифметическими или взвешенными.

1.2.1. Запись кодовых комбинаций в виде многочлена

Любое число в системе счисления с основанием k можно представить в виде многочлена. Так, n – разрядное число записывается в виде

$$F(k) = \sum_{i=0}^{n-1} A_i k^i = A_{n-1} k^{n-1} + A_{n-2} k^{n-2} + \ldots + A_0 k^0,$$

где A – цифровые коэффициенты, имеющие значения от 0 до $1 - k$.

В десятичной системе ($k = 10$)

$$F(10) = \sum_{i=0}^{n-1} A_i 10^i.$$ \hspace{2cm} (1.1)

Так, число 2017 записывается следующим образом:

$$2017 = 2 \cdot 10^3 + 0 \cdot 10^2 + 1 \cdot 10^1 + 7 \cdot 10^0.$$ \hspace{2cm} (1.2)

В двоичной системе счисления

$$F(2) = \sum_{i=0}^{n-1} A_i 2^i.$$ \hspace{2cm} (1.3)

Так, десятичное число 47 записывается следующим образом:

$$47 = 1 \cdot 2^5 + 0 \cdot 2^4 + 1 \cdot 2^3 + 1 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0$$

или в виде многочлена

$$G(k) = 1 \cdot x^5 + 0 \cdot x^4 + 1 \cdot x^3 + 1 \cdot x^2 + 1 \cdot x^1 + 1 \cdot x^0 = x^5 + x^3 + x^2 + x^1 + 1.$$ \hspace{2cm} (1.4)

Таким образом, члены многочленов записываются только при наличии коэффициента единицы.

1.2.2. Сложение многочленов

Над многочленами можно производить все алгебраические операции. Обычное сложение с переносом числа в высший разряд здесь не применимо, так как это может привести к образованию более высокого разряда, чем принято в данном коде, что недопустимо. Поэтому применяется такое называемое сложение двоичных чисел по модулю 2, обозначаемое знаком \oplus.

При двух слагаемых правила сложения следующие:
0 ⊕ 0 = 0; 0 ⊕ 1 = 1; 1 ⊕ 0 = 1; 1 ⊕ 1 = 0.

При сложении многочленов складывают коэффициенты при членах с совпадающими степенями. При этом сложение сводится к сложению только разрядов, занимающих одинаковые места.

Если складываются несколько чисел, то четное число единиц в сумме дает ноль, а сумма нечетного числа единиц приравнивается к единице. Иногда в результате сложения нескольких чисел сумма выражается меньшим двоичным числом, чем какое-либо из слагаемых. Для примера произведем сложение представленных многочленов:

\[x^6 + x^5 + x^2 + 1; x^5 + x^4 + 1; x^6 + x^4 + x^3 + x^2 + x^1 + 1.\]

Выразим эти многочлены в двоичных числах и произведем сложение:

\[
\begin{align*}
x^6 + x^5 + &0 + 0 + x^2 + 0 + 1 \rightarrow 1100101 \rightarrow 101_{10} \\
\oplus \\
0 + x^5 + x^4 + &0 + 0 + 0 + 1 \rightarrow 0110001 \rightarrow 49_{10} \\
\oplus \\
x^6 + 0 + x^4 + x^3 + x^2 + x + 1 \rightarrow 1011111 \rightarrow 95_{10} \\
0 + 0 + 0 + x^3 + 0 + x + 1 \rightarrow 0001011 \rightarrow 11_{10}.
\end{align*}
\]

1.2.3. Умножение многочленов

Для того чтобы при умножении многочленов не увеличивалась разрядность степени многочлена выше заданной, производят так называемое символьическое умножение, или умножение в конечном поле двоичных чисел, состоящее из двух этапов. Первый этап заключается в умножении многочленов по обычным правилам алгебры, за исключением сложения, которое производится по модулю 2. Перемножим два многочлена:

\[
\begin{align*}
x^6 + &x^5 + x^3 + x^2 + 1 = 1101101 \\
\times \\
x^5 + &x^4 + x^2 = 110100 \\
\hline
x^8 + &x^7 + 0 + x^5 + x^4 + 0 + x^2 = 1101110 \\
x^{10} + &x^9 + 0 + x^7 + x^6 + 0 + x^4 = 1101101 \\
x^{11} + &x^{10} + 0 + x^8 + x^7 + 0 + x^5 = 1101101 \\
x^{11} + 0 + &x^9 + 0 + x^7 + x^6 + 0 + 0 + 0 + x^2 & = 101011000100. \\
\end{align*}
\]
Произведем теперь умножение многочлена на \(x^n \). Например,
\[(x^5 + x^4 + x^2) \cdot x^3 = x^8 + x^7 + x^5.\] В результате умножения степень каждого члена многочлена повышалась на \(n \). В двоичной форме записи 110100 \(\times \) 1000 = 110100000. Таким образом, умножение многочлена на \(x^n \) означает приписывание справа \(n \) нулей.

1.2.4. Деление многочленов

При делении в двоичной записи делитель умножается на частное и подписывается под делимым так, чтобы совпадали старшие разряды.

В частное записывается единица. Для нахождения первого остатка из делимого вычитается делитель (что эквивалентно их сложению по модулю 2), и к остатку справа сносится очередной разряд делимого. Далее, под первым остатком снова подписывается делитель, и в частное приписывается еще одна единица, если число разрядов в остатке равно числу разрядов делителя. В противном случае в частном записывается ноль, и к остатку подписывается очередной член делимого. Деление продолжается до тех пор, пока степень остатка не станет меньше степени делителя, т. е. число разрядов остатка не окажется меньше числа разрядов делителя. Например:

\[
\begin{array}{c|cccc}
110110101 & 101011 \\
\cline{1-5}
1110 & x^4 + x^2 + x - частное Q(X) \\
101011 \\
11011 \\
\hline
101011 \\
\hline
100000 \\
\hline
101011 \\
\hline
100000 \to x^4 + x^2 + x + 1 - остаток
\end{array}
\]

1.2.5. Перенос слагаемых в многочленах

Понятие отрицательной цифры при операциях в конечном поле двоичных чисел отсутствует, так как это привело бы к увеличению признаков с двух до трех, т. е. к троичной системе счисления. Поэтому перенос слагаемых из одной части в другую производится без изменения знака. Например, справедливо как выражение
\((x^4 + x + 1) + (x^3 + x) = x^4 + x^3 + 1\), так и выражение, отличающееся тем, что второе слагаемое левой части перенесено в правую без изменения знака, т. е.
\((x^4 + x + 1) = (x^3 + x) + (x^4 + x^3 + 1)\). Справедливость этих равенств проверяется сложением по модулю 2 одночленов с одинаковыми степенями [2].
1.2.6. Матричная запись кодовых комбинаций

Всю совокупность комбинаций n-разрядного двоичного кода, насчитывающего 2^n различных комбинаций, можно записать в виде матрицы, содержащей 2^n строк и n столбцов. Так, все комбинации трехразрядного кода записаются в матрице a, представленной на рис. 1.4.

```
\[
\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 0 \\
1 & 0 & 1 \\
1 & 1 & 0 \\
1 & 1 & 1 \\
\end{array}\]
\]

Рис. 1.4. Матричная запись кодовых комбинаций

Если взять любые две или более строки матрицы $a$ и сложить их по модулю 2, то получим одну из остальных строк, записанных в этой матрице (п. б–з). Например, складывая вторую и третью строки, получим четвертую строку (п. з). Из матрицы $a$ можно выбрать комбинации, состоящие из одной единицы. Такие комбинации образуют матрицу, называемую единичной матрицей (матрица $u$). Матрица $u$ является транспонированной единичной матрицей, т. е. зеркальным отображением матрицы $u$. Интересным свойством обладает единичная матрица $u$: если сложить по модулю 2 в различном сочетании строки, то получим все остальные строки матрицы $a$ без нулевой.

При исследовании кодов иногда оказывается полезным графическое и геометрическое представление кодов [2].

1.2.7. Графическое представление кода

Графическое представление кода часто указывает пути и методы кодирования и декодирования комбинаций и представляет собой древовидный график, состоящий из точек и расходящихся от них линий, заканчивающихся также точками. Точки графа называются вершинами, а соединяющие их линии — ребрами. Начальная вершина, от которой начинается расхождение ребер, называется корнем дерева, а число ребер, которое надо пройти от корня к некоторой вершине, — порядком этой вершины. Максимальное число ребер, которые могут выходить из каждой вершины дерева, равно основанию кода, а максимальный поряд-
док вершин, которое оно содержит, равен максимальной длине кодовых комбинаций. Значения разрядов комбинации, приписываемой каждой вершине, соответствуют направлениям движения по ребрам от корня дерева к данной вершине. Ребра, ведущие от корня к вершинам первого порядка, определяют значение первого слева разряда комбинации; ребра, соединяющие вершины первого и второго порядков, дают значение второго разряда комбинации и т. д.

На рис. 1.5 показано кодовое дерево для двоичного трехразрядного кода.

![Diagram](image1.png)

Рис. 1.5. Графическое представление кодового дерева

### 1.2.8. Геометрическая модель кода

Геометрическая модель кода является более наглядной, чем графическое представление кода. Она даёт наглядное представление о возможностях перехода одной комбинации в другую в результате искажения, и поэтому по ней легко судить о корректирующих возможностях кода, т. е. о его способности обнаруживать и исправлять ошибки.

Любая n-разрядная двоичная кодовая комбинация может быть интерпретирована как вершина n-мерного единичного куба, т. е. куба с длиной ребра, равной 1. При n = 2 кодовые комбинации располагаются в вершинах квадрата (рис. 1.6), при n = 3 – в вершинах единичного куба (рис. 1.7). В общем случае n-мерный единичный куб имеет $2^n$ вершин, что равно наибольшему возможному числу кодовых комбинаций.

Такая модель дает простую геометрическую интерпретацию кодовому расстоянию \( d \) между отдельными кодовыми комбинациями. Оно соответствует наименьшему числу ребер единичного куба, которое необходимо пройти, чтобы попасть от одной комбинации к другой.
Рис. 1.6. Геометрическая модель двухразрядного двоичного кода

Рис. 1.7. Геометрическая модель трёхразрядного двоичного кода

На рис. 1.8 и 1.9 представлены геометрические модели троичного двухразрядного и трехразрядного кодов соответственно.

Рис. 1.8. Геометрическая модель троичного двухразрядного кода
1.2.9. Классификация двоичных кодов

По возможности обнаружения и исправления ошибок различают простые и корректирующие коды. Дальнейшая классификация приведена на рис. 1.10.

![Diagram](image.png)

Рис. 1.10. Классификация двоичных кодов
Корректирующий код называется блочным, если каждая его комбинация имеет ограниченную длину, и непрерывным, если его комбинация имеет неограниченную длину. Коды в зависимости от методов внесения избыточности бывают разделимыми и неразделимыми. В разделимых кодах четко разграничена роль отдельных символов. Одни символы являются информационными, другие являются проверочными и служат для обнаружения и исправления ошибок. Неразделимые коды не имеют четкого разделения кодовой комбинации на информационные и проверочные символы.

1.2.10. Основные характеристики двоичных кодов

Двоичные коды характеризуются весом кода \( w \), кодовым расстоянием \( d \) и весовой характеристикой \( F(w) \). Весом кода \( w \) называется количество единиц в кодовой комбинации. Например, для кодовой комбинации 1011110 вес кода \( w = 5 \).

Число одноименных разрядов двух кодовых комбинаций, значения которых не совпадают, есть кодовое расстояние \( d \) между этими комбинациями. Для определения кодового расстояния необходимо сложить эти комбинации по модулю 2.

Например, для кодовых комбинаций 10101 и 00110 \( d = 3 \), так как 10101 \( \oplus \) 00110 = 10011 (\( w = 3 \)). Таким образом, кодовое расстояние определенного кода — это минимальное число элементов, которыми любая кодовая комбинация отличается от другой (по всем парам кодовых слов). Например, для кода, состоящего из комбинаций 1100, 1000, 1011, 1101 \( d_{\text{min}} = 1 \), так как 1100 \( \oplus \) 1101 = 0001 (\( w = 1 \)).

Весовая характеристика кода \( F(w) \) — число кодовых комбинаций определенного веса \( w \). Например, для кода, представленного комбинациями 00001 (\( w = 1 \)), 11010 (\( w = 3 \)), 10110 (\( w = 3 \)), 11110 (\( w = 4 \)), имеем \( F(1) = 1, F(3) = 2, F(4) = 1 \), т. е. код состоит из одного кодового слова веса 1, двух слов веса 3 и одного слова веса 4.

Корректирующие коды имеют и некоторые дополнительные характеристики.

Абсолютная избыточность кода определяется числом проверочных символов \( r \), т. е. количеством разрядов, отводимых для коррекции ошибок.

Относительная избыточность кода \( R \) есть отношение числа проверочных символов к длине кода \( R = r / n \). В общем случае относительную избыточность рассчитывают по формуле

\[
R = 1 - \log_2 N_p / \log_2 N, \quad (1.4)
\]

где \( N_p \) — число кодовых комбинаций, используемых для передачи сообщений (рабочая мощность кода);

\( N \) — полное число кодовых комбинаций (мощность кода).
1.3. Простые двоичные коды

Эти коды относятся к непомехозащищённым кодам. Непомехозащищённым кодом называется код, в котором искажение одного разряда кодовой комбинации не может быть обнаружено. Рассмотрим примеры двоичных непомехозащищённых кодов.

**Двоичный код на все сочетания.** Кодовые комбинации этого кода соответствуют записи натурального ряда чисел в двоичной системе счисления. Вес разряда кода определяется из выражения

\[ q_i = 2^{i-1}, \quad (1.5) \]

где \( i = 1, 2, 3, \ldots, n \).

Общее число комбинаций

\[ N = 2^n. \quad (1.6) \]

**Единично-десятичный код.** Каждый разряд десятичного числа записывается в виде соответствующего числа единиц (табл. 1.3). При этом разряды разделяются интервалами. Например, 24 → 1111111. Этот код неравномерный.

Для преобразования в равномерный необходимо в каждом разряде слева дописать столько нулей, чтобы общее число символов в каждом десятичном разряде было равно 9. Например, 24 → 000000011 000001111.

**Двоично-десятичный код.** Каждый разряд десятичного числа записывается в виде комбинации двоичного кода. В табл. 1.3 представлены двоично-десятичные коды с весовыми коэффициентами: 8-4-2-1; 2-4-2-1; 4-2-2-1; 5-1-2-1.

Число 576 различными двоично-десятичными кодами будет записано следующим образом:

- в коде 8-4-2-1 576→010101110110;
- в коде 2-4-2-1 576→101111011000;
- в коде 4-2-2-1 576→100111010101;
- в коде 5-1-2-1 576→100010101001.

Коды с весовыми коэффициентами 2-4-2-1 называются самодополняющимися, так как инвертированный код, полученный заменой 0 на 1 и 1 на 0 в каждом разряде, всегда дополняет основной до числа 9 (1111).

Например, если инвертировать комбинацию 0100 (цифра 4 в коде 2-4-2-1), то получится комбинация 1011, соответствующая цифре 5. При этом сложение прямой и инвертированной комбинации 0100 и 1011 даёт в сумме комбинацию1111, что соответствует цифре 9.

**Числоимпульсный.** Иногда его называют единичным (или унитарным) кодом. Кодовые комбинации отличаются друг от друга числом единиц. Примеры для 12-разрядного кода даны в табл. 1.3 (столбец 8б).
Очевидно, что число кодовых комбинаций в этом коде равно разрядности, т. е. \( N = n \).

**Код Джонсона.** Этот код применяется в устройствах, преобразующих линейные и угловые перемещения в кодовые комбинации. Записи цифр от 0 до 9 приведены в табл. 1.3 (столбец 7). Таким образом, число 137 в коде Джонсона будет представлено в виде 00001 00111 11100.

**Код Грея.** Этот код, который иногда называют резентным (отраженным), применяют для преобразования линейных и угловых перемещений в кодовые комбинации. Если при таком преобразовании используется обычный двоичный код, то некоторые расположенные рядом кодовые комбинации различаются в нескольких разрядах.

Например, комбинации 0111 (цифра 7) и 1000 (цифра 8) различаются во всех разрядах. При считывании кода с кодового диска может возникнуть большая ошибка от неоднозначности считывания, обусловленная неточностью изготовления кодового диска или неточностью установки считающих элементов. Допустим, что третий считающий элемент установлен с отставанием, тогда при считывании цифры 8 получим кодовую комбинацию 1100, что соответствует цифре 12, а следовательно, ошибка будет равна 50 %.

Таблица 1.3

<table>
<thead>
<tr>
<th>Десятичный</th>
<th>8-4-2-1 на всех сочетаниях</th>
<th>2-4-2-1 (Айкена)</th>
<th>4-2-2-1</th>
<th>5-1-2-1</th>
<th>Код Грея 15-7-3-1</th>
<th>Джонсона</th>
<th>Единично-двоичный неравномерный</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
<td>25 → 11 111111</td>
</tr>
<tr>
<td>2</td>
<td>0001</td>
<td>0001</td>
<td>0001</td>
<td>0001</td>
<td>0001</td>
<td>0001</td>
<td>14 → 1 1111</td>
</tr>
<tr>
<td>3</td>
<td>0010</td>
<td>0010</td>
<td>0010</td>
<td>0010</td>
<td>0010</td>
<td>0010</td>
<td>8a</td>
</tr>
<tr>
<td>4</td>
<td>0100</td>
<td>0100</td>
<td>0100</td>
<td>0100</td>
<td>0100</td>
<td>0100</td>
<td>25 → 00 000000 1000 00111111</td>
</tr>
<tr>
<td>5</td>
<td>0101</td>
<td>0101</td>
<td>0101</td>
<td>0101</td>
<td>0101</td>
<td>0101</td>
<td>14 → 00 0000000001 11111111</td>
</tr>
<tr>
<td>6</td>
<td>0110</td>
<td>0110</td>
<td>0110</td>
<td>0110</td>
<td>0110</td>
<td>0110</td>
<td>1111</td>
</tr>
<tr>
<td>7</td>
<td>0111</td>
<td>0111</td>
<td>0111</td>
<td>0111</td>
<td>0111</td>
<td>0111</td>
<td>1100</td>
</tr>
<tr>
<td>8</td>
<td>1000</td>
<td>1110</td>
<td>1110</td>
<td>1101</td>
<td>1101</td>
<td>1101</td>
<td>10000</td>
</tr>
<tr>
<td>9</td>
<td>1001</td>
<td>1111</td>
<td>1111</td>
<td>1111</td>
<td>1111</td>
<td>1111</td>
<td>10000</td>
</tr>
<tr>
<td>10</td>
<td>1010</td>
<td>10000</td>
<td>10000</td>
<td>10000</td>
<td>1111</td>
<td>10000</td>
<td>10000</td>
</tr>
<tr>
<td>11</td>
<td>1011</td>
<td>10001</td>
<td>10001</td>
<td>10001</td>
<td>1110</td>
<td>1110</td>
<td>10000</td>
</tr>
<tr>
<td>12</td>
<td>1100</td>
<td>10100</td>
<td>10100</td>
<td>10100</td>
<td>1010</td>
<td>1010</td>
<td>10001</td>
</tr>
<tr>
<td>13</td>
<td>1101</td>
<td>10101</td>
<td>10101</td>
<td>10101</td>
<td>1011</td>
<td>1011</td>
<td>10011</td>
</tr>
<tr>
<td>14</td>
<td>1110</td>
<td>10110</td>
<td>10110</td>
<td>10110</td>
<td>1011</td>
<td>1011</td>
<td>10111</td>
</tr>
<tr>
<td>15</td>
<td>1111</td>
<td>11000</td>
<td>11000</td>
<td>11000</td>
<td>1100</td>
<td>1100</td>
<td>11111</td>
</tr>
</tbody>
</table>

Построение кода Грея при отображении десятичных чисел от 0 до 15 четырехразрядным двоичным кодом поясняется табл. 1.3. Столбец старшего разряда делёт пополам, в верхнюю половину вписываются нули, в нижнюю - единицы.
Затем столбец следующего разряда делят на четыре равные части, которые заполняются единицами и нулями зеркально (с отражением) относительно линии разряда колонки старшего разряда. Аналогичная процедура выполняется в столбцах младших разрядов: единицы и нули заносятся зеркально относительно линий раздела колонки предыдущего разряда. В результате этих простых операций получили двоичный код, в котором соседние комбинации отличаются значением только в одном разряде. Например, те же цифры 7 и 8 в коде Грея запишутся как 0100 и 1100. Допустим, что 1-й считывающий элемент установлен с опережением, тогда вместо комбинации 1100 (цифра 8) получим комбинацию 1101 (цифра 9). Таким образом, ошибка в коде Грея не превосходит цены младшего разряда.

Код Грея, как и другие отраженные коды, относится к системам счисления с несущественным распределением весов разрядов, что затрудняет обработку информации, представленной этими кодами, в ЭВМ и дешифраторах. В силу этого отраженные коды перед обработкой преобразуются в простой двоичный код.

Вес разрядов кода Грея определяется выражением
\[ q_i = 2^i - 1, \] (1.7)
где \( i = 1, 2, 3, \ldots, n. \)

Поскольку начиная с младшего разряда, веса разрядов записываются следующим образом: 1, 3, 7, 15, 31, … Чтобы прочесть число в коде Грея, под каждым разрядом записывают его десятичный эквивалент, старший значащий разряд берется со знаком плюс, перед остальными значениями разрядами знаки чередуются. Например, перевод комбинации кода Грея 101111 и 010011 в десятичный код производится следующим образом

\[
\begin{align*}
1 & | 0 & 1 & 1 & 1 & 1 & 1 \\
63 & 31 & 15 & 7 & 3 & 1 & 1 \\
0 & 1 & 0 & 0 & 0 & 1 & 1 \\
63 & 31 & 15 & 7 & 3 & 1 & 1 \\
\end{align*}
\]

= 63–15+7–3+1=53;

= 31–3+1=29.

Код Грея относится к неарифметическим кодам. Поэтому перед обработкой информации производят преобразование в двоичный код.

1.4. Оптимальные коды

Оптимальные по длине коды относятся к неравномерным непомехо-защищенным кодам. Оптимальным кодом считается код, имеющий минимальную среднюю длину кодового слова

\[ L = \sum_{i=1}^{n} \mu_i P(x_i), \] (1.8)

где \( \mu_i \) – длина кодового слова, сопоставляемая сообщению \( x_i; \)
\( P(x_i) \) – вероятность появления этого сообщения.
Очевидно, что \( \mu_i \) и \( L \) зависят от того, каким образом осуществляются формирование кодовых слов и их сопоставление с сообщениями \( x_i \). Наиболее вероятные сообщения кодируются кодом меньшей длины, а менее вероятные – кодом большей длины. Тогда, учитывая, что по каналу связи чаще будут передаваться кодовые комбинации меньшей длины, получаем экономию во времени при передаче последовательности сообщений.

В оптимальном коде энтропия на символ должна быть максимальной, а это возможно в том случае, когда вероятности появления единиц \( P(1) \) и нулей \( P(0) \) приблизительно одинаковы. Рассмотрим алгоритмы составления оптимальных кодов, удовлетворяющих максимальной энтропии на символ, при допущении, что время передачи единицы и нуля одинаковы \( t(1) = t(0) \).

**Код Шеннона.** Суть метода Шеннона применительно к двоичному кодированию состоит в следующем. Все сообщения записываются в порядке убывания их вероятностей. Далее множество дискретных сообщений делится на две части таким образом, чтобы сумма вероятностей сообщений, включенных в первую часть, была приблизительно равна сумме вероятностей сообщений второй части. После этого первому слева (старшему) разряду кода каждого сообщения первой части присваивается значение, равное нулю, а старшему разряду кода каждого сообщения второй части присваивается значение, равное единице. На этом считается законченным кодирование первого сообщения \( x_1 \). Затем остальные сообщения \( x_2, x_3, ..., x_n \) также делятся на две по возможности равновероятные подгруппы; одной из них присваивается значение 0, другой 1. На этом заканчивается кодирование второго сообщения \( x_2 \). Так продолжается до тех пор, пока не будут закодированы все сообщения.

Пример для кодирования 9 сообщений кодом Шеннона приведен в табл. 1.4.

**Таблица 1.4**

<table>
<thead>
<tr>
<th>Сообщения ( x_i )</th>
<th>Вероятность появления сообщений ( P(x_i) )</th>
<th>Разбиение сообщений на подмножества</th>
<th>( \mu_i )</th>
</tr>
</thead>
<tbody>
<tr>
<td>( x_1 )</td>
<td>0,35</td>
<td>( x_1, x_2 \rightarrow 0 )</td>
<td>1</td>
</tr>
<tr>
<td>( x_2 )</td>
<td>0,15</td>
<td>( x_3 \rightarrow 1 )</td>
<td>2</td>
</tr>
<tr>
<td>( x_3 )</td>
<td>0,13</td>
<td>( x_4, x_5 \rightarrow 1 )</td>
<td>3</td>
</tr>
<tr>
<td>( x_4 )</td>
<td>0,09</td>
<td>( x_6, x_7 \rightarrow 0 )</td>
<td>4</td>
</tr>
<tr>
<td>( x_5 )</td>
<td>0,09</td>
<td>( x_8, x_9 \rightarrow 0 )</td>
<td>5</td>
</tr>
<tr>
<td>( x_6 )</td>
<td>0,08</td>
<td>( x_10, x_11 \rightarrow 0 )</td>
<td>5</td>
</tr>
<tr>
<td>( x_7 )</td>
<td>0,05</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>( x_8 )</td>
<td>0,04</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>( x_9 )</td>
<td>0,02</td>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>
После пятой разбивки кодирование можно приостановить, так как нет двух одинаковых кодовых комбинаций. Подсчитаем среднее число нулей и единиц и вероятности их появления.

Среднее число нулей

\[ L(0) = 0,35 + 0,15 + 0,13 + 0,18 + 0,18 + 0,16 + 0,15 + 0,08 + 0,02 = 1,4. \]

Среднее число единиц

\[ L(1) = 0,15 + 0,26 + 0,18 + 0,27 + 0,24 + 0,10 + 0,12 + 0,08 = 1,4. \]

Средняя длина кодового слова

\[ L = 0,35 + 0,30 + 0,39 + 0,36 + 0,45 + 0,40 + 0,25 + 0,20 + 0,10 = 2,8. \]

Тогда

\[ P(1) = L(1) / L = 1,4 / 2,8 = 0,5; \]

\[ P(0) = L(0) / L = 1,4 / 2,8 = 0,5. \]

Таким образом, получим код с максимальной энтропией на символ, но более короткие комбинации являются началом более длинных, что требует передачи разделительных пауз между кодовыми сообщениями, а следовательно приводит к снижению эффективности. От этого недостатка свободен метод Шеннона–Фано.
2. КОРРЕКТИРУЮЩИЕ КОДЫ

2.1. Основные понятия

Помехоустойчивыми (корректирующими) называются коды, позволяющие обнаружить и исправить ошибки в кодовых комбинациях [4; 5]. Отсюда и деление кодов на две большие группы:

а) коды с обнаружением ошибок;
б) коды с обнаружением и исправлением ошибок.

Принципы обнаружения и исправления ошибок кодами проиллюстрируем с помощью геометрической модели трехразрядного двоичного кода (см. рис. 1.6). Если использовать все восемь кодовых комбинаций, записанных в вершинах куба, то образуется двоичный код на все сочетания. Как было показано выше, такой код не является помехоустойчивым. Если же уменьшить число используемых комбинаций с восьми до четырех, то появиться возможность обнаружения одиночных ошибок. Для этого выберем только такие комбинации, которые отстоят друг от друга на расстояние \( d = 2 \), например, 000, 110, 011 и 101. Остальные кодовые комбинации не используются. Если будет принята комбинация 100, то очевидно, что при ее приеме произошла одиночная ошибка. Представленные комбинации построены по определенному правилу, а именно содержат четное число единиц, а принята комбинация 100 – нечетное.

Можно утверждать, что комбинация 100 образовалась при искажении разряда одной из разрешенных комбинаций, но определить, какая именно комбинация искажена, невозможно. Поэтому такие или подобные им коды называют кодами с обнаружением ошибок. Также, в помехозащищенных кодах есть комбинации разрешенные, составленные по определенному правилу, и запрещенные, не соответствующие этому правилу. В общем случае при необходимости обнаруживать ошибки кратности до \( m \) включительно минимальное кодовое (хемингово) расстояние между разрешенными кодовыми комбинациями должно быть по крайней мере на единицу больше \( m \), т. е.

\[
d_{\text{min}} \geq m + 1. \tag{2.1}
\]

Действительно, в этом случае ошибка, кратность которой не превышает \( m \), не в состоянии перевести одну разрешенную кодовую комбинацию в другую.

Для исправления одиночной ошибки с каждой разрешенной кодовой комбинацией необходимо сопоставить подмножество запрещенных кодовых комбинаций. Чтобы эти подмножества не пересекались, хемингово расстояние между разрешенными кодовыми комбинациями должно быть не менее трех.

Примем за разрешенные комбинации 000 и 111 (см. рис. 1.6). В результате возникновения единичной ошибки образуются подмножества:
разрешенные комбинации \( \{000 \rightarrow 001, 010, 100\} \) запрещенные комбинации.

В общем случае для обеспечения возможности исправления всех ошибок кратности до \( S \) включительно каждая из ошибок должна приводить к запрещенной комбинации, относящейся к подмножеству исходной разрешенной кодовой комбинации.

Подмножество каждой из разрешенных \( n \)-разрядных комбинаций \( A_i \) (рис. 2.1) складывается из запрещенных комбинаций, являющихся следствием воздействия:

а) единичных ошибок (они располагаются на сфере радиусом \( d = 1 \), и их число равно \( C_n^1 \));

б) двойных ошибок (они располагаются на сфере радиусом \( d = 2 \), и их число равно \( C_n^2 \)) и т. д.

Рис. 2.1. Минимальное кодовое расстояние для исправления ошибок кратности \( S \)

Внешняя сфера подмножества имеет радиус \( d = S \) и содержит \( C_n^S \) запрещенных кодовых комбинаций.

Поскольку указанные подмножества не должны пересекаться, минимальное хеммингово расстояние между разрешенными комбинациями должно удовлетворять соотношению

\[
d_{\text{min}} \geq 2S + 1.
\]  

(2.2)
Нетрудно убедиться в том (рис. 2.2), что для исправления всех ошибок кратности $S$ и одновременного обнаружения всех ошибок кратности $m$ ($m \geq S$) минимальное хеммингово расстояние нужно выбирать из условия

$$d_{\min} \geq m + S + 1.$$  (2.3)

Вопрос о минимально необходимой избыточности, при которой код обладает нужными корректирующими свойствами, является одним из важнейших в теории кодирования. Для некоторых частных случаев Хемминг указал простые соотношения, позволяющие определить необходимое число проверочных символов

$$r_d = 3 \geq E \log (n + 1);$$

$$r_d = 3 \geq E \log ((k + 1) + E \log (k + 1)).$$  (2.4)

(2.5)

Рис. 2.2. Минимальное кодовое расстояние для одновременного исправления ошибок кратности $S$ и обнаружения ошибок кратности $m$

В реальных каналах связи длительность импульсов помехи часто превышает длительность символа. При этом одновременно искажаются несколько расположенных рядом символов комбинации. Ошибки такого рода получили название пачек ошибок или пакетов ошибок. Длиной пакета ошибок $b$ называется число следующих друг за другом символов, левее и правее которых в кодовой комбинации искаженных символов не содержится. Если, например, кодовая комбинация 1010100111011 в результате действия помех трансформировалась в комбинацию 10101010101011, то длина пачки ошибок $b$ составляет пять символов.
2.2. Коды с обнаружением ошибок

Особенностью этих кодов является то, что кодовые комбинации, входящие в их состав, отличаются друг от друга не менее чем на \( d = 2 \).

Коды с обнаружением ошибок условно можно разбить на две группы:
а) коды, построенные путем уменьшения числа используемых комбинаций;
б) коды, в которых используются все комбинации, но к каждой из них по определенному правилу добавляются контрольные \( r \)-символы.

Рассмотрим сначала некоторые примеры кодов первой группы.

2.2.1. Код с постоянным весом (код на одно сочетание)

Общее число кодовых комбинаций в данном коде

\[
N = C^m_n = \frac{n!}{m!(n-m)!},
\]

где \( m \) – число единиц в слове длиной \( n \).

В табл. 2.1 представлен код \( C^2_4 \). Правильность принятых кодовых комбинаций определяется путем подсчета количества единиц, и если их число отличается от \( m \), то в передаче произошла ошибка. Необнаруженная ошибка имеет место, если произошло искажение типа «смещения», т. е. когда единица переходит в ноль, а ноль – в единицу.

2.2.2. Распределительный код \( C^1_n \)

Это также разновидность кода с постоянным весом, равным единице. Число кодовых комбинаций в данном коде

\[
N = C^1_n = n.
\]

Кодовая комбинация при \( n = 6 \) представлена в табл. 2.1 (столбец 3). Сложение по модулю 2 двух комбинаций показывает, что они отличаются друг от друга на кодовое расстояние \( d = 2 \). В системах телемеханики этот код нашел широкое применение из-за простой реализации [1; 2].

Таблица 2.1

<table>
<thead>
<tr>
<th>Номер кодовой комбинации</th>
<th>Код ( C^2_4 )</th>
<th>Код ( C^1_6 )</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0011</td>
<td>000001</td>
</tr>
<tr>
<td>2</td>
<td>0119</td>
<td>000010</td>
</tr>
<tr>
<td>3</td>
<td>1100</td>
<td>000100</td>
</tr>
<tr>
<td>4</td>
<td>1001</td>
<td>001000</td>
</tr>
<tr>
<td>5</td>
<td>1010</td>
<td>010000</td>
</tr>
<tr>
<td>6</td>
<td>0101</td>
<td>100000</td>
</tr>
</tbody>
</table>

Рассмотрим теперь коды второй группы.
2.2.3. Код с проверкой на четность

Код с проверкой на четность образуется путем добавления к передаваемой комбинации одного контрольного символа (0 или 1), так чтобы общее количество единиц в передаваемой комбинации было четным. Примеры представления кодовых комбинаций в данном коде приведены в табл. 2.2.

Таблица 2.2

<table>
<thead>
<tr>
<th>Информационные символы $k$</th>
<th>Контрольные символы $r$</th>
<th>Код с проверкой на четность $n = k + r$</th>
</tr>
</thead>
<tbody>
<tr>
<td>01101</td>
<td>1</td>
<td>011011</td>
</tr>
<tr>
<td>01111</td>
<td>0</td>
<td>011110</td>
</tr>
</tbody>
</table>

Такой код состоит из $N = 2^k$ комбинаций и имеет минимальное кодовое расстояние $d_{min} = 2$. Коэффициент избыточности кода с проверкой на четность зависит от числа информационных символов:

$$K_{изб} = 1 - \frac{k}{n} = 1 - \frac{k}{k + r} = 1 - \frac{k}{n}. \quad (2.8)$$

Обнаружение ошибок на приемной стороне осуществляется подсчетом количества единиц в принятой комбинации, и если оно четное, считается, что искажений нет. Тогда контрольный символ отбрасывается и исходная $k$-разрядная комбинация выдается получателю информации. В противном случае кодовая комбинация бракуется.

Данный код может обнаружить любое нечетное число искажений. Рассмотренный код является простейшим помехоустойчивым кодом, однако принцип проверки на четность используется во многих достаточно сложных помехоустойчивых кодах.

2.2.4. Код с проверкой на нечетность

Особенностью кода является то, что каждая комбинация содержит нечетное число единиц (табл. 2.3). К проверке этого факта и сводится обнаружение ошибок в кодовых комбинациях. Другие основные характеристики кода такие же, как и у кода с одной проверкой на четность.

Таблица 2.3

<table>
<thead>
<tr>
<th>Информационные символы $k$</th>
<th>Контрольные символы $r$</th>
<th>Полная кодовая комбинация $n = k + r$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10101</td>
<td>0</td>
<td>101010</td>
</tr>
<tr>
<td>11101</td>
<td>1</td>
<td>111011</td>
</tr>
</tbody>
</table>
2.2.5. Код с двумя проверками на четность

Данный код является разновидностью кода с проверкой на четность и образуется путем добавления к передаваемой комбинации двух контрольных символов (табл. 2.4). Первый символ добавляет 0 или 1 так, чтобы общее количество единиц в передаваемой комбинации было четным, а второй символ добавляет 0 или 1 так, чтобы количество единиц в нечетных разрядах передаваемой комбинации было четным.

Обнаружение ошибок осуществляется подсчетом количества единиц в информационной части кодовой комбинации и первом контрольном разряде, а также в нечетных разрядах информационной части и втором контрольном символе, и если оно четное в первом и втором случае, то считается, что искажений нет. В противном случае принятая кодовая комбинация бракуется. Данный код позволяет обнаруживать все нечетные искажения и искажения в смежных разрядах, т. е. стоящих рядом.

Таблица 2.4

<table>
<thead>
<tr>
<th>Информационные символы k</th>
<th>Контрольные символы</th>
<th>Полная кодовая комбинация</th>
</tr>
</thead>
<tbody>
<tr>
<td>r1</td>
<td>r2</td>
<td></td>
</tr>
<tr>
<td>101011</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>111101</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>100010</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>101010</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

2.2.6. Код с повторением

Этот код имеет две разновидности. В одной из них имеет место m-кратное повторение комбинации простого кода \( a_1, a_2...a_k \): 

\[
\begin{align*}
\underbrace{a_1 a_2 ... a_k}_{1} & \underbrace{a_1 a_2 ... a_k}_{2} & \underbrace{a_1 a_2 ... a_k}_{m}
\end{align*}
\]

Например, при \( m = 3 \) кодовая комбинация 1011 в коде с повторением комбинаций будет 1011 1011 1011.

Вторая разновидность кода с повторением характеризуется m-кратной передачей каждого разряда (код с повторением элементов кода):

\[
\begin{align*}
\underbrace{a_1 a_2 ... a_k}_{m \text{ раз}} & \underbrace{a_1 a_2 ... a_k}_{m \text{ раз}} & \underbrace{a_1 a_2 ... a_k}_{m \text{ раз}}
\end{align*}
\]

Например, при \( m = 3 \) кодовая комбинация 1011 в коде с m-кратной передачей каждого разряда будет 111 000 111 111.

Код с повторением имеет длину \( n = m \times k \), число контрольных разрядов \( r = k(m – 1) \). Избыточность этих кодов равна \((m – 1)m\). Весьма высокая избыточность является недостатком кодов с повторением. Даже при двухкратном повторении она составляет 0,5:

28
\[ K_{\text{ноб}} = 1 - \frac{k}{n} = 1 - \frac{k}{2k} = 0.5. \]

Код имеет минимальное кодовое расстояние \( d_{\text{min}} = m \) и может использоваться как для обнаружения, так и для исправления ошибок. Для обнаружения ошибок применяют, как правило, код с четным \( d_{\text{min}}, \) для исправления – с нечетным \( d_{\text{min}}. \) Правильность принятой информации определяется при проведении позлементного сравнения информационных и контрольных символов, и при наличии хотя бы одного несогласия вся принятая комбинация бракуется.

Код с повторением позволяет обнаруживать ошибки любой кратности за исключением случаев, когда искается один информационный символ и все соответствующие ему контрольные, два информационных символа и соответствующие им контрольные и т.д.

При исправлении ошибок в комбинациях обычно применяется мажоритарный принцип исправления для каждого информационного символа, т.е. за истинное значение информационного символа принимается то, которое большее число раз встречается в этом информационном и соответствующих ему контрольных символах. При трехкратном повторении мажоритарный принцип реализуется как решение по двум символам из трех, при пятикратном – как решение по трем из пяти и т.д.

При увеличении числа повторений увеличивается минимальное кодовое расстояние, соответственно улучшаются корректирующие свойства кода, но значительно увеличивается и избыточность. Поэтому кратность повторений больше трех практически не используется.

В условиях коррелированных ошибок обычно применяют первую разновидность кода с повторением, имеющую в этом случае более высокую помехоустойчивость. Это обусловлено тем, что входящие в одну строку число разряды достаточно далеко отстоят друг от друга и с малой вероятностью поражаются одним пакетом ошибок.

2.2.7. Код с числом единиц, кратным трем

Этот код образуется добавлением к \( k\)-информационным символам двух дополнительных контрольных символов \((r = 2)\), которые должны иметь такие значения, чтобы сумма единиц, посылаемых в линию кодовых комбинаций, была кратной трем. Примеры комбинаций такого кода представлены в табл. 2.5.

<table>
<thead>
<tr>
<th>Информационные символы ( k )</th>
<th>Контрольные символы</th>
<th>Полная кодовая комбинация</th>
</tr>
</thead>
<tbody>
<tr>
<td>( r1 )</td>
<td>( r2 )</td>
<td></td>
</tr>
<tr>
<td>001000</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>011000</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>011001</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Код позволяет обнаружить все одиночные ошибки и любое четное количество ошибок одного типа (например, только переход 0 в 1), не обнаруживаются двойные ошибки разных типов (смещения) и ошибки одного типа, кратные трём. На приемной стороне полученную комбинацию проверяют на кратность трём. При наличии такой кратности считают, что ошибок не было, два контрольных знака отбрасывают и записывают исходную комбинацию. Данный код обладает дополнительной возможностью обнаруживать ошибки: если первый контрольный символ равен нулю, то и второй тоже должен быть равен нулю.

2.2.8. Инверсный код (код с повторением инверсии)

Это разновидность кода с двукратным повторением. При использовании данного кода комбинации с четным числом единиц повторяются в неизменном виде, а комбинации с нечетным числом единиц – в инвертированном.

Примеры представления кодовых комбинаций в инверсном коде приведены в табл. 2.6.

Таблица 2.6

<table>
<thead>
<tr>
<th>Инверсный код</th>
<th>Информационные символы $k$</th>
<th>Контрольные символы $r$</th>
<th>Инверсный код $n = k + r$</th>
</tr>
</thead>
<tbody>
<tr>
<td>111100</td>
<td>111100</td>
<td>1111001111100</td>
<td></td>
</tr>
<tr>
<td>011100</td>
<td>100011</td>
<td>011100100011</td>
<td></td>
</tr>
<tr>
<td>110111</td>
<td>001000</td>
<td>110111001000</td>
<td></td>
</tr>
<tr>
<td>111010</td>
<td>111010</td>
<td>111010111010</td>
<td></td>
</tr>
</tbody>
</table>

Прием инверсного кода осуществляется в два этапа. На первом этапе суммируются единицы в первой половине кодовой комбинации. Если их количество окажется четным, то вторая половина кодовой комбинации принимается без инверсии, а если нечетным – то с инверсией. На втором этапе обе зарегистрированные комбинации поэлементно сравниваются, и при обнаружении хотя бы одного несовпадения комбинация бракуется. Это поэлементное сравнение эквивалентно суммированию по модулю 2. При отсутствии ошибок в обеих группах символов их сумма равна нулю.

Рассмотрим процесс обнаружения ошибок на следующем примере. Пусть передана последняя кодовая комбинация из табл. 2.6. Ниже показано суммирование для трех вариантов приема переданной комбинации:

1) $\begin{array}{c} 111010 \\ 111010 \end{array}$
2) $\begin{array}{c} 101010 \\ 00101 \end{array}$
3) $\begin{array}{c} 111010 \\ 101010 \end{array}$

$\begin{array}{c} 000000 \\ 101111 \end{array}$

$\begin{array}{c} 010000 \end{array}$
В первом варианте принята комбинация 111010111010. В первой половине кодового слова (в информационных символах) четное количество единиц, поэтому производится ее суммирование по модулю 2 с неинвертируемыми контрольными символами г, что в результате дает нулевую сумму, т. е. комбинация принята без искажений.

Во втором варианте принята комбинация 101010111010. Подсчитывая количество единиц в информационных символах и замечая, что оно нечетное, контрольные символы инвертируют и суммируют с информационными символами. Присутствие единиц в результате свидетельствует о наличии ошибки, а ноль в этой сумме показывает ее место.

В третьем варианте принята комбинация 111010101010. Поскольку в информационной последовательности четное количество единиц, при проверке контрольные символы суммируются с информационными без инверсии. В этом случае в итоге появляется одна единица. Ее место указывает номер искаженной позиции в принятой последовательности контрольных символов.

Таким образом, если при суммировании в результате среди единиц появляется один ноль — ошибка появилась в первой половине принятой кодовой комбинации (в информационных символах) и ноль указывает ее место. Если в результате среди нулей появляется одна единица — ошибка во второй половине кодовой комбинации (в контрольных символах) и ее место указывает единица.

Если в результате суммирования имеется несколько единиц или нулей, это означает, что комбинация принята с несколькими искажениями.

Кодовое расстояние инверсного кода равно количеству разрядов исходного кода при \( k < 4 \) и равно 4 при \( k \geq 4 \). Например, при \( d=4 \) код может обнаруживать двойные ошибки и исправлять одиночные. Обычно этот код используется только для обнаружения ошибок. Он позволяет обнаруживать ошибки любой кратности за исключением таких, когда искажены 2 информационных символа и соответствующие им 2 контрольных, 4 информационных и соответствующие им 4 контрольных и т. д. Коэффициент избыточности инверсного кода равен 0,5.

**2.2.9. Корреляционный код (код с удвоением числа элементов)**

В рассматриваемом коде символы исходного кода кодируются повторно. Правило вторичного кодирования таково: если в исходном кодовом слове на какой-либо позиции стоит 0, в новом помехоустойчивом коде на эту позицию записывается пара символов 01, а если в исходном коде была 1, она записывается как 10.

Например, кодовое слово 1001 в корреляционном коде будет выглядеть следующим образом: 10010110. Корреляционный код будет всегда...
иметь вдвое больше элементов, чем исходный. Поэтому его коэффициент избыточности всегда равен 0,5:

\[ K_{\text{изм}} = 1 - \frac{k}{n} = 1 - \frac{k}{2k} = 0.5. \]

На приеме ошибка обнаруживается в том случае, если в парных элементах содержатся одинаковые символы, т. е. 11 или 00 (вместо 10 и 01). При правильном приеме вторые (четные) элементы отбрасываются и остаются первоначальная комбинация.

Код обладает сравнительно высокой помехоустойчивостью, поскольку ошибка не будет обнаружена только в том случае, если будут исказаны два рядом стоящих элемента, соответствующие одному элементу исходного кода, т. е. 0 перейдет в 1, а 1 – в 0.

Наибольшая эффективность корреляционного кода проявляется при применении его на каналах, у которых вероятность искажения элементов (единиц и нулей) непрерывно меняется и в отдельные интервалы времени существенно различна.

2.2.10. Код Бергера

Контрольные символы в этом коде представляют разряды двоичного числа в прямом или инверсном виде количества единиц или нулей, содержащихся в исходной кодовой комбинации. Число контрольных символов определяется из выражения

\[ r = E \log(k + 1), \]

где \( E \) – знак округления в большую сторону.

Примеры составления комбинаций в коде Бергера из обычного шестиразрядного двоичного кода представлены в табл. 2.7.

На приемной стороне подсчитывается число единиц (нулей) в информационной части и сравнивается с контрольной кодовой комбинацией (складывается по модулю 2).

При отсутствии ошибок в обеих комбинациях их сумма равна нулю. Ниже показана проверка для шести вариантов приема переданной комбинации из табл. 2.7. Искаженные символы отмечены точкой.

101011100 100 \( \oplus \) 100 = 000 искажений нет;
100011100 011 \( \oplus \) 100 = 111 искажение обнаружено;
110011100 100 \( \oplus \) 100 = 000 искажение не обнаружено;
111111100 110 \( \oplus \) 100 = 010 искажение обнаружено;
101011101 100 \( \oplus \) 101 = 001 искажение обнаружено;
101011100 100 \( \oplus \) 010 = 110 искажение обнаружено.
Код Бергера

<table>
<thead>
<tr>
<th>Информационные символы</th>
<th>Контрольные символы</th>
<th>Полная кодовая комбинация ( n = k + r )</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Количество единиц в двоичном коде</td>
<td>Количество нулей в двоичном коде</td>
</tr>
<tr>
<td></td>
<td>прямом</td>
<td>инверсном</td>
</tr>
<tr>
<td>101011</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>101011</td>
<td></td>
<td>011</td>
</tr>
<tr>
<td>101011</td>
<td></td>
<td>010</td>
</tr>
<tr>
<td>101011</td>
<td></td>
<td>101</td>
</tr>
</tbody>
</table>

Данный код обнаруживает все одиночные и большую часть многократных ошибок.

2.3. Коды с обнаружением и исправлением ошибок

Если кодовые комбинации составлены так, что отличаются друг от друга на кодовое расстояние \( d \geq 3 \), то они образуют корректирующий код, который позволяет по имеющейся в кодовой комбинации избыточности не только обнаруживать, но и исправлять ошибки. Большую группу кодов, исправляющих ошибки, составляют систематические коды. Рассмотрим общие принципы построения этих кодов.

2.3.1. Систематические коды

Систематическими кодами называются блочные \((n, k)\) коды, у которых \( k \) (обычно первые) разряды представляют собой двоичный неизбыточный код, а последующие \( r \)-контрольные разряды сформированы путем линейных комбинаций над информационными.

Основное свойство систематических кодов – сумма по модулю 2 двух и более разрешенных кодовых комбинаций также дает разрешенную кодовую комбинацию.

Правило формирования кода обычно выбирают так, чтобы при декодировании имелась возможность выполнить ряд проверок на четность для некоторых определенным образом выбранных подмножеств информационных и контрольных символов каждой кодовой комбинации. Анализируя результаты проверок, можно обнаружить или исправить ошибку ожидающего вида.

Информацию о способе построения такого кода содержит проверочная матрица, которая составляется на базе образующей матрицы.

Образующая матрица \( M \) состоит из единичной матрицы размерностью \( k \times k \) и приписанной к ней справа матрицы дополнений размерностью \( k \times r \):
Разрядность матрицы дополнений выбирается из выражения (2.4) или (2.5). Причем вес $w$ (число ненулевых элементов) каждой строки матрицы дополнений должен быть не меньше чем $d_{min} - 1$.

Проверочная матрица $N$ строится из образующей матрицы следующим образом. Строками проверочной матрицы являются столбцы матрицы дополнений образующей матрицы. К полученной матрице дописывается справа единичная матрица размерностью $r \times r$. Таким образом, проверочная матрица размерностью $r \times k$ имеет вид

$$ N = \begin{pmatrix} b_{11} & b_{21} & b_{31} & \ldots & b_{k1} & 1 & 0 & 0 & \ldots \\ b_{12} & b_{22} & b_{32} & \ldots & b_{k2} & 0 & 1 & 0 & \ldots \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \ddots \\ b_{1r} & b_{2r} & b_{3r} & \ldots & b_{kr} & 0 & 0 & 0 & \ldots & 1 \end{pmatrix}. $$

(2.11)

Единицы, стоящие в каждой строке, однозначно определяют, какие символы должны участвовать в определении значения контрольного разряда. Причем единицы в единичной матрице определяют номера контрольных разрядов.

**Пример 2.1.** Получить алгоритм кодирования в систематическом коде всех четырехразрядных кодовых комбинаций, позволяющей исправлять единичную ошибку. Таким образом, задано число информационных символов $k = 4$ и кратность исправления $S = 1$. По выражению (2.5) определим число контрольных символов:

$$ r \geq E \log((4 + 1) + E \log(4 + 1)) = 3. $$

Минимальное кодовое расстояние определим из выражения (2.2):

$$ d_{min} \geq 2 \times 1 + 1 = 3. $$

Сстроим образующую матрицу

$$ M = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{pmatrix}. $$
Проверочная матрица будет иметь вид

\[
N = \begin{bmatrix}
a_1 & a_2 & a_3 & a_4 & a_5 & a_6 & a_7 \\
0 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 1 & 1 & 0 & 0 & 1 \\
\end{bmatrix}
\]

Обозначим символы, стоящие в каждой строке, через \( a_i \) (\( a_1a_2a_3a_4a_5a_6a_7 \)).

Символы \( a_5, a_6 \) и \( a_7 \) примем за контрольные, так как они будут входить только в одну из проверок.

Составим проверки для каждого контрольного символа. Из первой строки имеем

\[
a_5 = a_2 \oplus a_3 \oplus a_4.
\]

Из второй строки получим алгоритм для формирования контрольного символа \( a_6 \):

\[
a_6 = a_1 \oplus a_2 \oplus a_4.
\]

Аналогично из третьей строки получим алгоритм для формирования контрольного символа \( a_7 \):

\[
a_7 = a_1 \oplus a_3 \oplus a_4.
\]

Нетрудно убедиться, что все результаты проверок на четность по выражениям (2.12)–(2.14) дают ноль, что свидетельствует о правильности составления образующей и проверочной матриц.

**Пример 2.2.** На основании алгоритма, полученного в примере 2.1, закодировать кодовую комбинацию \( G(x) = 1101 = a_1a_2a_3a_4 \) в систематическом коде, позволяющем исправлять одиночную ошибку.

По выражениям (2.12)–(2.14) найдем значения для контрольных символов \( a_5, a_6 \) и \( a_7 \):

\[
a_5 = 1 \oplus 0 \oplus 1 = 0; \\
a_6 = 1 \oplus 1 \oplus 1 = 1; \\
a_7 = 1 \oplus 0 \oplus 1 = 0.
\]

Таким образом, кодовая комбинация \( F(x) \) в систематическом коде будет иметь вид

\[
F(x) = 1101010.
\]

На приемной стороне производятся проверки \( S_i \) принятой кодовой комбинации, которые составляются на основании выражений (2.12)–(2.14):

\[
S_1 = a_2 \oplus a_3 \oplus a_4 \oplus a_5; \\
S_2 = a_1 \oplus a_2 \oplus a_4 \oplus a_6; \\
S_3 = a_1 \oplus a_3 \oplus a_4 \oplus a_7.
\]

Если синдром (результат проверок на четность) \( S_1S_2S_3 \) будет нулевого порядка, то искажений в принятой кодовой комбинации \( F'(x) \) нет.
При наличии искажений синдром $S_1S_2S_3$ указывает, какой был искажен символ. Рассмотрим все возможные состояния $S_1S_2S_3$:

$$S_1 \; \; S_2 \; S_3$$

0 0 0 – искажений нет;
1 0 0 – искажен символ $a_5$;
0 1 0 – искажен символ $a_6$;
0 0 1 – искажен символ $a_7$;
1 1 0 – искажен символ $a_2$;
0 1 1 – искажен символ $a_1$;
1 1 1 – искажен символ $a_4$;
1 0 1 – искажен символ $a_3$.

(2.18)

Пример 2.3. Кодовая комбинация $F(x) = 1101010$ (пример 2.2) при передаче была искажена и приняла вид $F'(x) = 1111010 = a_1a_2a_3a_4a_5a_6a_7$. Декодировать принятую кодовую комбинацию.

Произведем проверки согласно выражениям (2.17)

$$S_1 = 1 \oplus 1 \oplus 1 \oplus 0 = 1;$$

$$S_2 = 1 \oplus 1 \oplus 1 \oplus 1 = 0;$$

$$S_3 = 1 \oplus 1 \oplus 1 \oplus 0 = 1.$$

(2.17)

Полученный синдром $S_1S_2S_3 = 101$ согласно (2.18) свидетельствует об искажении символа $a_3$. Заменяем этот символ на противоположный и получаем исправленную кодовую комбинацию $F(x) = 1101010$, а исходная кодовая комбинация имеет $G(x) = 1101$, что совпадает с кодовой комбинацией, подлежащей кодированию в примере 2.2.

2.3.2. Код Хемминга

Данный код относится к числу систематических кодов. По существу, это целая группа кодов, при $d_{\text{min}} = 3$ исправляющая все одиночные или обнаружающая двойные ошибки, а при $d_{\text{min}} = 4$ исправляющая одиночные и обнаружающая двойные ошибки.

В качестве исходных берут двоичный код на все сочетания с числом информационных символов $k$, к которому добавляют контрольные символы $r$.

Таким образом, общая длина закодированной комбинации $n = k + r$. Рассмотрим последовательность кодирования и декодирования кода Хемминга.

Кодирование. Определение числа контрольных символов. При передаче по каналу с шумами может быть или искажен любой из $n$ символов кода, или слово передано без искажений. Таким образом, может быть $n + 1$ вариантов принятых сообщений. Используя контрольные символы, необходимо различить все $n + 1$ вариантов. С помощью контрольных символов $r$ можно описать $2n$ событий. Значит, должно быть выполнено условие
\[ 2^r \geq n + 1 = k + r + 1. \] \hspace{1cm} (2.19)

В табл. 2.8 представлена зависимость между \( k \) и \( r \), полученная из этого неравенства.

Таблица 2.8

<table>
<thead>
<tr>
<th>( k )</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>( r )</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

Чаше всего заданным является число информационных символов, тогда число контрольных символов можно определить из выражения (2.5).

Размещение контрольных символов. К построению кодов Хэмминга обычно привлекают производящие матрицы, а процедура проверки при обнаружении и исправлении ошибок проводится с помощью проверочных матриц.

Ниже приводится более простой алгоритм, получивший широкое распространение.

В принципе, место расположения контрольных символов не имеет значения: их можно приписывать и перед информационными символами, и после них, и чередуя информационные символы с контрольными. Для удовлетворения искаженного символа целесообразно размещать их на местах, кратных степени 2, т. е. на позициях 1, 2, 4, 8 и т. д. Информационные символы располагаются на оставшихся местах. Поэтому, например, для девятиэлементной закодированной комбинации можно записать

\[ r_1, r_2, k_5, r_3, k_4, k_3, k_2, r_4, k_1, \] \hspace{1cm} (2.20)

где \( k_5 \) – старший (пятый) разряд исходной кодовой комбинации двоичного кода, подлежащий кодированию;

\( k_1 \) – младший (первый) разряд.

Определение состава контрольных символов. Какой из символов должен стоять на контрольной позиции (1 или 0), выявляют с помощью проверки на четность. Для этого составляют колонку ряда натуральных чисел в двоичном коде, число строк в которой равно \( n \), а рядом справа, сверху вниз проставляют символы комбинации кода Хэмминга, записанные в такой последовательности (2.20):

\[
\begin{align*}
0001 - r_1 & \quad 0110 - k_3; \\
0010 - r_2 & \quad 0111 - k_2; \\
0011 - k_5 & \quad 1000 - r_4; \\
0100 - r_3 & \quad 1001 - k_1; \\
0101 - k_4. & \quad
\end{align*}
\] \hspace{1cm} (2.21)

Затем составляются проверки по следующему принципу: первая проверка – коэффициенты с единицей в младшем разряде \( \{r_1, k_5, k_4, k_2, k_1\} \); вторая – коэффициенты во втором разряде \( \{r_2, k_5, k_3, k_2\} \); третья –
коэффициенты с единицей в третьем разряде \((r_3, k_4, k_3, k_2)\); четвертая – коэффициенты в четвертом разряде \((r_4, k_3)\). Рассматривая проверки, видим, что каждый контрольный символ входит только в одну из проверок, а поэтому для определения состава контрольных символов суммируют информационные символы, входящие в каждую строку. Если сумма единиц в данной строке четная, то значение символа \(r\), входящего в эту строку, равно нулю, если нечетная, то единице. Таким образом,

\[
\begin{align*}
  r_1 &= k_5 \oplus k_4 \oplus k_2 \oplus k_1; \\
  r_2 &= k_5 \oplus k_3 \oplus k_2; \\
  r_3 &= k_4 \oplus k_3 \oplus k_2; \\
  r_4 &= k_1.
\end{align*}
\]  (2.22)

В случае кодирования более длинных кодовых комбинаций нужно лишь увеличить число разрядов двоичного кода в колонках (2.21).

**Декодирование.** Для проверки правильности принятой комбинации производят \(S_i\) проверок на четность:

\[
\begin{align*}
  S_1 &= r_1 \oplus k_5 \oplus k_4 \oplus k_2 \oplus k; \\
  S_2 &= r_2 \oplus k_5 \oplus k_3 \oplus k_2; \\
  S_3 &= r_3 \oplus k_4 \oplus k_3 \oplus k_2; \\
  S_4 &= r_4 \oplus k_1.
\end{align*}
\]  (2.23)

Если комбинация принята без искажений, то сумма единиц по модулю 2 дает ноль. При искажении какого-либо символа суммирование при проверке дает единицу. По результату суммирования каждой из проверок (2.23) составляют двоичное число \(S_4, S_3, S_2, S_1\) (синдром), указывающее на место искажения. Например, первая и вторая проверки показали наличие искажения, а суммирования при третьей и четвертой проверках (2.23) дали нули. Записываем число \(S_4, S_3, S_2, S_1 = 0011\), которое означает, что в третьем символе кодовой комбинации (2.20), включающей и контрольные символы (счет производится слева направо), возникло искажение, значит, этот символ нужно исправить на обратный ему. После этого контрольные символы, стоящие на заранее известных местах, отбрасываются.

Код Хемминга с \(d_{\text{min}} = 4\) строится на базе кода Хемминга с \(d_{\text{min}} = 3\) путем добавления дополнительного контрольного символа к закодированной комбинации, который позволяет производить проверку на четность всей комбинации. Поэтому контрольный символ должен быть равен единице, если число единиц в закодированной комбинации нечетное, и нулю, если число единиц четное, т. е. закодированная комбинация будет иметь вид

\[
\begin{align*}
  r_1, r_2, k_5, r_3, k_4, k_3, k_2, r_4, k_1, r_5,
\end{align*}
\]  (2.24)

где

\[
\begin{align*}
  r_5 &= r_1 \oplus r_2 \oplus k_5 \oplus r_3 \oplus k_4 \oplus k_3 \oplus k_2 \oplus r_4 \oplus k_1.
\end{align*}
\]  (2.25)
При декодировании дополнительно к проверкам (2.23) производится проверка:

\[ S_\Sigma = r_1 \oplus r_2 \oplus k_5 \oplus r_3 \oplus k_4 \oplus k_3 \oplus k_2 \oplus r_4 \oplus k_1 \oplus r_5, \]  

(2.26)

При этом возможны следующие варианты:

а) частные проверки (2.23) \( S_i = 0 \) и общая (2.25) \( S_\Sigma = 0 \) — ошибок нет;

б) \( S_i \neq 0 \) и \( S_\Sigma = 0 \) — двойная ошибка, принятая кодовая комбинация бракуется;

в) \( S_i \neq 0 \) и \( S_\Sigma \neq 0 \) — одиночная ошибка, синдром указывает номер в двоичном коде искаженного разряда, который корректируется;

г) \( S_i = 0 \) и \( S_\Sigma \neq 0 \) — искажен последний разряд общей проверки на четность, информационные символы поступают потребителю.

**Пример 2.4.** Закодировать в коде Хемминга с \( d = 4 \) кодовую комбинацию \( G(X) = 10011 \), т. е. \( k = 5 \).

Согласно табл. 2.8 число контрольных символов \( r_{d=3}=4 \), размещаются они на позициях 1, 2, 4 и 8, и информационные — на позициях 3, 5, 6, 7, 9. Учитывая, что \( G(X) \) необходимо закодировать в коде Хемминга с \( d = 4 \), добавляют пятый контрольный разряд общей проверки на четность (2.25). Тогда последовательность в общем виде можно записать так:

\[
\begin{align*}
& r_1, r_2, k_5, r_3, k_4, k_3, k_2, r_4, k_1, r_5, \\
& ?, ?, 1, ?, ?, 1, 0, 1, ?, 1, ?.
\end{align*}
\]

(2.27)

Для определения контрольных символов \( r_1 - r_4 \) подставим значения \( k_1 - k_5 \) в (2.22) и получим

\[
\begin{align*}
& r_1 = 1 \oplus 0 \oplus 1 \oplus 1 = 1; \\
& r_2 = 1 \oplus 0 \oplus 1 = 0; \\
& r_3 = 0 \oplus 0 \oplus 1 = 1; \\
& r_4 = 1.
\end{align*}
\]

Контрольный символ \( r_5 \) определим из выражения (2.25):

\[
r_5 = 1 \oplus 0 \oplus 1 \oplus 1 \oplus 0 \oplus 0 \oplus 1 \oplus 1 \oplus 1 = 0.
\]

Таким образом, в линию связи будет послан код:

\[
F(X) = 1011001110.
\]

**Пример 2.5.** В приемник поступила кодовая комбинация \( F'(X) = 1010001110 \) в коде Хемминга с \( d = 4 \). Декодировать ее; если имеются искажения, то обнаружить и при возможности исправить.

Произведем \( S_i \) проверки согласно (2.23) и \( S_\Sigma \) согласно (2.26), в результате получим

\[
\begin{align*}
& S_1 = 1 \oplus 1 \oplus 0 \oplus 1 \oplus 1 = 0; \\
& S_2 = 0 \oplus 1 \oplus 0 \oplus 1 = 0; \\
& S_3 = 0 \oplus 0 \oplus 0 \oplus 1 = 1; \\
& S_4 = 1 \oplus 1 = 0; \\
& S_5 = 1 \oplus 0 \oplus 1 \oplus 0 \oplus 0 \oplus 0 \oplus 1 \oplus 1 \oplus 1 \oplus 0 = 1.
\end{align*}
\]
Таким образом, получим синдром $S_4S_3S_2S_1 = 0100$ и $S_2 = 1$, что указывает на то, что искажен четвертый разряд кодовой комбинации $F'(X)$. После исправления получим $F(X) = 101101110$, а следовательно, информационная последовательность будет иметь вид $G(X) = 10011$, что соответствует исходной кодовой комбинации примера 2.4.

2.3.3. Циклические коды

Общие понятия и определения. Циклические коды относятся к числу блоковых систематических кодов, в которых каждая комбинация кодируется самостоятельно (в виде блока) таким образом, что информационные $(k)$ и контрольные символы $(r)$ всегда находятся на определенных местах.

Любой групповой код $(n, k)$ может быть записан в виде матрицы, включающей $k$ линейно независимых строк по $n$ символов, и, наоборот, любая совокупность $k$ линейно независимых $n$-разрядных кодовых комбинаций может рассматриваться как образующая матрица некоторого группового кода. Среди всего многообразия таких кодов можно выделить коды, у которых строки образующих матриц связаны дополнительным условием цикличности.

Все строки образующей матрицы такого кода могут быть получены циклическим сдвигом одной комбинации, называемой образующей для данного кода. Коды, удовлетворяющие этому условию, получили название циклических кодов. Сдвиг осуществляется справа налево, причем крайний левый символ каждой раз переносится в конец комбинации. Запишем, например, совокупность кодовых комбинаций, получающихся циклическим сдвигом комбинации 001011:

\[
G = \begin{bmatrix}
0 & 0 & 1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 & 1 \\
\end{bmatrix}
\]

При описании циклических кодов $n$-разрядные кодовые комбинации представляются в виде многочленов фиктивной переменной $x$. Тогда циклический сдвиг строки матрицы с единицей в старшем $n$-разряде (слева) равносилен умножению соответствующего строке многочлена на $x$ с одновременным вычитанием из результата многочлена $X^n + 1 = X^n - 1$, т. е. с приведением по модулю $X^n + 1$. Умножив, например, первую строку
матрицы (001011), соответствующую многочлену $G_0(X) = x^3 + x + 1$, на $x$, получим вторую строку матрицы (010110), соответствующую многочлену $X \cdot G_0(X)$. Нетрудно убедиться, что кодовая комбинация, получающаяся при сложении этих двух комбинаций, также будет соответствовать результату умножения многочлена $x^3 + x + 1$ на многочлен $x + 1$.

Действительно, 

$$001011 \oplus 010110 = 011101 = x^4 + x^3 + x^2 + x^1 + 1;$$

$$(x^3 + x + 1)(x + 1) = x^4 + x^3 + x^1 + 1 = 011101.$$ 

Отсюда ясно, что любая разрешенная кодовая комбинация циклического кода может быть получена в результате умножения образующего многочлена на некоторый другой многочлен с приведением результата по модулю $x^n + 1$.

Иными словами, при соответствующем выборе образующего многочлена любой многочлен циклического кода будет делиться на него без остатка.

Ни один многочлен, соответствующий запрещенной кодовой комбинации, на образующий многочлен без остатка не делится. Это свойство позволяет обнаружить ошибку. По виду остатка можно определить и вектор ошибки.

Умножение и деление многочленов весьма просто осуществляется на регистрах сдвига с обратными связями и сумматорах по модулю 2.

В основу циклического кодирования положено использование не-приводимого многочлена $P(X)$, который применимительно к циклическим кодам называется образующим, генераторным или производящим многочленом (полиномом).

Многочлен в поле двоичных чисел называется неприводимым, если он делится без остатка только на себя или на единицу.

Методы построения циклического кода. Существует несколько различных способов кодирования. Принципиально наиболее просто комбинации циклического кода можно получить, умножая многочлены $G(X)$, соответствующие комбинациям безызбыточного кода (информационным символам), на образующий многочлен кода $P(X)$. Такой способ легко реализуется, однако он имеет тот существенный недостаток, что получающиеся в результате умножения комбинации кода не содержат информационных символов в явном виде.

После исправления ошибок такие комбинации для выделения информационных символов приходится делить на образующий многочлен кода. Ситуацию можно значительно упростить, если контрольные символы переписать в конце кода, т. е. после информационных символов. Для этой цели прибегают к следующему искусственному приему.
Умножаем кодовую комбинацию \( G(X) \), которую мы хотим закодировать, на одночлен \( X' \), имеющий ту же степень, что и образующий многочлен \( P(X) \).

Делим произведение \( G(X)X' \) на образующий полином \( P(X) \):

\[
\frac{G(X) \cdot X'}{P(X)} = Q(X) + \frac{R(X)}{P(X)},
\]

где \( Q(X) \) – частное от деления;
\( R(X) \) – остаток.

Умножая выражение (2.28) на \( P(X) \) и перенося \( R(X) \) в другую часть равенства, согласно правилам алгебры двоичного поля, т. е. без перемен знака на обратный, получаем

\[
F(X) = Q(X) \cdot P(X) = G(X) \cdot X' + R(X).
\]

Таким образом, согласно равенству (2.29), циклический код можно образовать двумя способами:

а) умножением одной из комбинаций двоичного кода на все сочетания (комбинация \( Q(X) \) принадлежит к той же группе того же кода, что и заданная комбинация \( G(X) \)) на образующий многочлен \( P(X) \);

б) умножением заданной комбинации \( G(X) \) на одночлен \( X' \), имеющий ту же степень, что и образующий многочлен \( P(X) \), с добавлением к этому произведению остатка \( R(X) \), полученного после деления произведения \( G(X) \cdot X' \) на генераторный полином \( P(X) \).

**Пример 2.6.** Закодировать кодовую комбинацию \( G(X) = 1111 = x^3 + x^2 + x + 01 \) циклическим кодом.

**Решение.** Не останавливаясь на выборе генераторного полинома \( P(X) \), о чем будет сказано подробно далее, возьмем многочлен \( P(X) = x^3 + x + 1 = 1011 \). Умножая \( G(X) \cdot X' \), получаем \( G(X) \cdot X'' = (x^3 + x^2 + x + 1) \cdot x^3 = x^6 + x^5 + x^4 + x^3 \rightarrow 1110001 \).

От умножения степени каждого члена повысилась, что равносильно приписыванию трех нулей к многочлену, выраженному в двоичной форме. Разделив на \( G(X) \cdot X' \) на \( P(X) \), согласно (2.28) получим

\[
\frac{x^6 + x^5 + x^4 + x^3}{x^3 + x + 1} = (x^3 + x + 1) + \frac{x^2 + x + 1}{x^3 + x + 1},
\]

или в двоичном эквиваленте

\[
1111000 / 1011 = 1101 + 111 / 1011.
\]

Таким образом, в результате деления получаем частное \( Q(X) = 1101 \) того же степени, что и \( G(X) = 1111 \), и остаток \( R(X) = 111 \). В итоге комбинация двоичного кода, закодированная циклическим кодом, согласно (2.29) примет вид

\[
F(X) = 1101 \times 1011 = 1111000 + 111 = 1111111.
\]

Действительно, умножение 1101 \( \times 1011 \) (первый способ) дает тот же результат, что и сложение 1111000 \( + 111 \) (второй способ).
2.4. Частотные коды

Частотные коды относятся к нецифровым кодам и применяются для передачи независимых команд, когда нет необходимости во взвешенных кодах. Используются как двухпозиционные, так и многопозиционные коды. На практике находят применение однчастотные коды и коды, в основу принципов комбинирования которых положены математические законы теории соединений. Используются перестановки $P_n$, размещения $A_n^m$, сочетания $C_n^m$ и другие законы комбинирования.

Одночастотный код. В системах телемеханики с небольшим числом команд часто используют данный код, при котором каждое сообщение передается радиоимпульсом определенной частоты, число сообщений $N = n_q$, где $n_q$ – число частот. Во время передачи данного сообщения остальные частоты не передаются.

Коды, образованные по закону перестановок. Перестановки $P_n$ из $n$ различных частот образуют кодовые комбинации, отличающиеся только порядком следования этих частот. Число элементов во всех комбинациях всегда одинаково. Длина сообщения равна числу частот, т. е. $m = n_q = \text{const}$. Отличительной особенностью этого кода является отсутствие одинаковых частот в одном сообщении. Такой код часто называется аккордным. Общее число комбинаций:

$$N = n_q!.$$ (2.30)

Например, при трех частотах получается шесть комбинаций: $f_1 f_2 f_3$, $f_1 f_2 f_1$, $f_2 f_1 f_3$, $f_2 f_1 f_2$, $f_3 f_1 f_2$, $f_3 f_2 f_1$. Данный код позволяет обнаруживать одиночные искажения, так как в сообщении каждый элемент встречается только один раз.

Коды, образованные по закону размещений. Размещения $A_n^m$ образуют комбинации, которые отличаются друг от друга либо частотами, либо порядком их следования. Количество кодовых комбинаций:

$$N = A_n^m = n! / (n - m)!.$$ (2.31)

Если, например, $n = 3$, $m = 2$, то общее число комбинаций равно шести: $f_1 f_2, f_1 f_3, f_2 f_1, f_2 f_3, f_3 f_1, f_3 f_2$. Комбинации передаются последовательно.

Этот код позволяет обнаруживать одиночные ошибки путем счета символов, содержащихся в сообщении.

Коды на определенное число сочетаний. С помощью сочетаний $C_n^m$ можно образовать комбинации, отличающиеся друг от друга только самими частотами. Общее число сообщений, которое можно передать из $n$ частот по $m$ частот:

$$N = C_n^m = n! / (m!(n - m)!).$$ (2.32)

Так, например, если $n = 4$, $m = 2$, то можно организовать шесть сообщений: $f_1 f_2, f_1 f_3, f_1 f_4, f_2 f_3, f_2 f_4, f_3 f_4$. Данные коды имеют постоянное чис-
ло радиоимпульсов (частот) и поэтому могут обнаруживать любые искажения за исключением искажений типа «смещение», когда радиоимпульс заменяется радиоимпульсом другой частоты, используемой при формировании всех комбинаций.

Смечно-качественные коды. Данные коды широко применяются в устройствах ТУ (ТС) как обладающие свойствами самораспределения. В смечно-качественных кодах соседние символы не могут быть одинаковы, а поэтому дешифратор кода легко может различить различные разряды в сообщении. Пусть необходимо передать кодовую комбинацию \( G(x) = 10011101 \) смечно-качественным кодом. Для этой цели 1 передается частотой \( f_1 \), \( 0 - f_2 \), а повторение символа (0 или 1) – \( f_3 \). Тогда комбинация принимает вид \( f_1 f_2 f_3 f_1 f_1 f_2 f_1 \). Нетрудно установить лишь те искажения, в результате которых соседние радиоимпульсы получают одинаковое значение частотного признака, другие искажения не обнаруживаются.

Так, например, если \( n = 4 \), \( m = 2 \), то можно передать шесть сообщений: \( f_1 f_2, f_1 f_3, f_1 f_4, f_2 f_3, f_2 f_4, f_3 f_4 \). Данные коды имеют постоянное число радиоимпульсов (частот) и поэтому могут обнаруживать любые искажения за исключением искажений типа смещение, когда радиоимпульс заменяется радиоимпульсом другой частоты, используемой при формировании всех комбинаций.
3. КОМБИНАЦИОННЫЕ УСТРОЙСТВА КОДИРОВАНИЯ И ДЕКОДИРОВАНИЯ КОРЕКТИРУЮЩИХ КОДОВ

Кодирующим устройством называется преобразователь дискретных сообщений или сигналов (например, импульсов) в кодовые комбинации заданного кода, а декодирующим — обратный преобразователь кодовых комбинаций заданного кода в дискретные сообщения или сигналы, выдаваемые на индивидуальные входы.

Кодирующее устройство называют также кодером или шифратором, а декодирующее — декодером или дешифратором. Кодер формирует, а декодер разделяет кодовые комбинации по индивидуальным выходным цепям.

Наиболее широкое понятие, используемое при разработке технических средств кодирования и декодирования, — это преобразователи кодов. Преобразователям кодов называется функциональный узел, преобразующий один код в другой. Такие функциональные узлы преобразуют, пример, двоичный или двоично-десятичный код в десятичный, либо в код отображения информации на цифровом индикаторе, непомехозащищенный код в код с обнаружением или исправлением ошибок, а также производят обратное преобразование в приемном устройстве [2].

3.1. Кодер и декодер кода с защитой на четность

Функциональная схема такого кодера для четырехразрядного кода приведена на рис. 3.1.

![Diagram](image-url)

Рис. 3.1. Кодер кода с защитой на четность

Схема работает следующим образом. При подаче импульса запуска исходная кодовая комбинация \( k_1k_2k_3k_4 \) записывается в регистр \( DD1 \) и одновременно поступает на информационные входы мультиплексора \( DD5 \). На элементах \( DD2–DD4 \) собрана схема контроля четности. Если число единиц в исходной кодовой комбинации четное, то на выходе \( DD4 \) ноль, если нечетное —
едицица. Результат этой проверки является контрольным символом $r_i$, который поступает на вход X5 мультиплексора DD5. При поступлении двоичного кода на адресные входы S0, S1, S3 мультиплексор последовательно передает на выход кодовую комбинацию, находящуюся на входах X1–X5.

Например, пусть необходимо закодировать кодовую комбинацию 1101. После ее записи в DD1 на выходе DD4 появится контрольный символ, равный единице, а на выходе мультиплексора – последовательный код $F(x) = 11011 = k_1k_2k_3k_4k_r$.

Для формирования контрольного разряда $r_i$ можно использовать счетный триггер вместо ИМС DD2–DD4, и тогда схема кодера будет иметь вид, представленный на рис. 3.2.

![Схема формирования контрольного символа с помощью счетного триггера](image)

Для работы триггера в счетном режиме необходимо иметь паузы между символами, что достигается путем подачи стробирующих импульсов на вход E мультиплексора.

При декодировании принятая кодовая комбинация $F^*(x)$ проверяется на четность. Если число единиц четное, то искажений нет, в противном случае кодовая комбинация бракуется. Схема декодера на 5 разрядов приведена на рис. 3.3.

В качестве схемы контроля четности используется сумматор по модулю 2.

Если в комбинации $F^*(x)$ четное количество единиц, то на инверсном выходе DD2 будет единица, которая поступит на один из входов схемы «I» DD3. На второй вход на пятом такте поступит импульс опроса. При наличии двух единиц на входе, на выходе DD3 появляется единица, которая откроет схемы «I» DD4.1–DD4.4 и информационные символы поступят в приемник. Если в комбинации $F^*(x)$ будет нечетное число единиц, то
сигнал с выхода формирователя DD5 сбросит регистр в исходное положение.

Сумматор по модулю 2 на любое число входов может быть построен на двухвходовых схемах «исключающее ИЛИ», или можно использовать схемы контроля четности ИП2, ИП5.

![Diagram](image)

Рис. 3.3. Схема декодера кода с защитой на четность

На рис. 3.4 показано условное обозначение и цоколевка микросхемы К155ИП2, а в табл. 4.1 – состояния ИМС.

![Diagram](image)

Рис. 3.4. Условное обозначение ИМС ИП2

<table>
<thead>
<tr>
<th>Состояния ИП</th>
<th>Сумма единиц на входах D0–D7</th>
<th>Входы</th>
<th>Входы</th>
</tr>
</thead>
<tbody>
<tr>
<td>Четная</td>
<td></td>
<td>EE</td>
<td>0E</td>
</tr>
<tr>
<td>Нечетная</td>
<td></td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Четная</td>
<td></td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Нечетная</td>
<td></td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Неопределенная</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Неопределенная</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Таблица 3.1
3.2. Кодер и декодер кода с постоянным весом

Кодер с постоянным весом применяется в системах ТУ. Принцип построения этого кода и корректирующие возможности изложены в подразделе 2.2.1. Рассмотрим кодер для кода $C_4^2$. С его помощью можно передать 6 команд (2.6). Поставим в соответствие каждой команде (сообщению) свою кодовую комбинацию:

$$
\begin{align*}
x_1 &= 0011 = \overline{y}_4 \overline{y}_3 y_2 y_1, & x_2 &= 0101 = \overline{y}_4 y_3 \overline{y}_2 y_1, \\
x_3 &= 1001 = y_4 \overline{y}_3 \overline{y}_2 y_1, & x_4 &= 0110 = \overline{y}_4 y_3 \overline{y}_2 \overline{y}_1. \\
x_5 &= 1010 = y_4 \overline{y}_3 y_2 \overline{y}_1, & x_6 &= 1100 = y_4 y_3 \overline{y}_2 \overline{y}_1. 
\end{align*}
$$

(3.1)

Откуда получим выражения для разрядов $y_i$ через сообщения $x_i$ в следующем виде:

$$
\begin{align*}
y_1 &= x_1 + x_2 + x_3, & y_2 &= x_1 + x_4 + x_5, \\
y_3 &= x_2 + x_4 + x_5, & y_4 &= x_3 + x_5 + x_6. 
\end{align*}
$$

(3.2)

Кодер, построенный в соответствии с приведенными выражениями, показан на рис. 3.5.

Рис. 3.5. Кодер кода $C_4^2$

Подлежащие кодированию сообщения заносятся в ОЗУ $DD1$ и с выходов $x_1, x_2, x_3, x_4, x_5, x_6$ поступают на кодер, который собран на элементах $DD2–DD5$. Входы этих элементов соединены с выходами ОЗУ $DD1$, в соответствии с выражениями (3.2). Закодированная кодовая комбинация $y_4, y_3, y_2, y_1$ записывается в регистр $DD6$, а затем последовательно выдвигается в линию связи.

Функциональная схема декодера для кода $C_4^2$ приведена на рис. 3.6.
Кодовая комбинация $F^*(Y)$ из линии связи поступает в приемный регистр $DD1$ и далее на собственно сам дешифратор, собранный на элементах «И» $DD6.1$–$DD6.6$, входы которых заведены в соответствии с выражениями (3.1).

На выходе схем «И» $DD6.1$–$DD6.6$ получаем сигналы, соответствующие передаваемым сообщениям $x_1, \ldots, x_6$. Нетрудно видеть, что данная схема обладает защитным отказом, т. е. при поступлении на вход кодовых комбинаций, содержащих количество единиц, отличное от двух, ни на одном из выходов $x_1, \ldots, x_6$ сигнала не будет.

### 3.3. Кодер и декодер кода с двумя проверками на четность

Принцип образования кодовых комбинаций в данном коде описан в подразделе 2.2.5.

Кодирующее устройство для $k = 6$ показано на рис. 3.7. Оно состоит из входного регистра $DD1$, схем контроля четности $DD2$, $DD3$ и преобразователя параллельного кода в последовательный $DD4$.

Схемой $DD2$ формируется первый контрольный разряд $r_1$, дополняющий до четности всех информационных разрядов, а схемой $DD3$ формируется второй контрольный разряд $r_2$, дополняющий до четности всех нечетных информационных разрядов, т. е. $k_1, k_5$ и $k_5$. 
Рис. 3.7. Кодер кода с двумя проверками на четность

Декодирующее устройство рассматриваемого кода приведено на рис. 3.8.

Оно состоит из приемного регистра DD1, двух схем контроля четности DD2 и DD3, определителя синдрома DD4, формирователя сигнала «сброс» DD5 и схем вывода информационных символов DD6–DD11.

Если кодовая комбинация $F^*(x)$ поступает в приемник без искажений, то на инверсном выходе схемы контроля четности DD2, осуществляющей проверку $k_1 \oplus k_2 \oplus k_3 \oplus k_4 \oplus k_5 \oplus k_6 \oplus r_1$, появится 1. На инверсном выходе схемы контроля четности DD3, осуществляющей проверку $k_1 \oplus k_3 \oplus k_5 \oplus r_2$, тоже будет 1. Эти оба сигнала поступят на вход определителя синдрома DD4, и единичный сигнал с его выхода дает разрешение на вывод получателю информационных символов через элементы «И» DD6–DD11. Если $F^*(x)$ была искажена, то на инверсном выходе одной или двух схем контроля четности будет сигнал 0, что вызовет запрет на выдачу информационных символов получателю информации, а 1 на выходе DD5 вызовет сброс регистра DD1 в исходное положение. Следует отметить, что опрос определителя синдрома DD4 происходит на девятом такте, т. е. после приема всей кодовой комбинации из линии связи.
Рис. 3.8. Декодирующее устройство кода с двумя проверками на четность

3.4. Кодер и декoder кода с повторением

Как известно из подраздела 2.2.6, существуют две разновидности этого кода.

Первая – это когда исходная комбинация повторяется m раз и вторая – когда каждый элемент повторяется m раз. Кодирующие устройства для первого и второго вариантов представлены на рис. 3.9 и 3.10 соответственно.

Кодер на рис. 3.9 работает следующим образом. Кодовая комбинация, подлежащая кодированию, заносится в регистр DD1. По сигналу «Пуск» тритгер DD2 устанавливается в 1, открывается схема «H» DD4, и тактовые импульсы от генератора DD3 поступают на вход счетчика тактов DD5 и одновременно на вход C2 кольцевого регистра DD1. Исходная кодовая комбинация выдвигается на выход m (в данном случае m = 3) раз. Число повторений устанавливается счетчиком тактов DD5. После того как счетчиком DD5 будет зафиксировано 3k тактов, на выходе счетчика DD5 появляется сигнал, который устанавливает тритгер DD2 в исходное положение и схема готова к кодированию следующего сообщения.
Если на вход поступило сообщение \( G(x) = 1101 = k_4 k_3 k_2 k_1 \), то в результате трехкратной передачи в линию связи поступит кодовая комбинация \( F(x) = 110111011101 \).
В кодере рис. 3.10 каждый символ $k_i$ исходной комбинации записывается в три рядом стоящих ячейки. Таким образом, после подачи $3k$ импульсов на вход $C2$ регистра $DD1$ на выход поступит кодовая комбинация $k_4 k_4 k_4 k_3 k_3 k_3 k_2 k_2 k_1 k_1 k_1$. Например, если подлежало кодированию сообщение $G(x) = k_4 k_3 k_2 k_1 = 1001$, то в линию связи поступит кодовая комбинация $F(x) = 111 000 000 111$.

Декодирование заключается в обнаружении и исправлении ошибок. Для исправления ошибок применяется мажоритарный принцип, т. е. за истинное значение информационного символа принимается то, которое большее число раз встречается в этом информационном и соответствующих ему контрольных символах. При трехкратном повторении решение принимается по двум символам из трех. Как указано в подразделе 2.2.6 наибольшее применение нашел код с повторением комбинаций, как обеспечивающий более высокую помехоустойчивость. Поэтому декодирующее устройство рассмотрим для этого случая, схема его приведена на рис. 3.11 для $k = 4, m = 3$ и $n = 12$.

Кодовая комбинация $F^*(x)$ из линии связи в последовательном коде заносится в регистр $DD1$. С выхода $DD1$ каждый информационный символ $k_i$ поступает на один из входов трехвходового мажоритарного элемента, на остальные два входа подаются соответствующие ему контрольные символы.

![Diagram](image)

**Рис. 3.11. Функциональная схема декодера кода с 3-кратным повторением исходной комбинации**
Трехвходовые мажоритарные элементы DD2–DD5 с инверсным выходом выполняют в общем виде функцию \( y = x_1 x_2 U x_1 x_3 U x_2 x_3 \). С учетом инверторов DD6–DD9 на выходе каждого элемента функция будет описываться выражением \( y = x_i x_2 U x_i x_3 U x_2 x_3 \), т. е. сигнал на выходе инвертора будет равен 1(0) только при поступлении на вход мажоритарного элемента двух и более входных сигналов \( x_i \), равных 1(0). После принятия решения каждым мажоритарным элементом о присвоении значения тому или иному информационному символу они поступают в приемник информации. Рассмотрим на примере передачи кодовой комбинации \( F(x) = 110111011101 \), которая под действием помех была искажена и на вход регистра DD1 поступила в виде \( F^*(x) = 010111001101 \), искаженные символы помечены точкой. Сигналы на входе и выходе каждого элемента указаны на рис. 3.11. Как видно из рис. 3.11 в результате принятия решения элементами DD2–DD5 исходное сообщение имеет вид \( G(x) = k_4 k_3 k_2 k_1 = 1101 \), что соответствует информационной части \( F(x) \).

В заключение следует указать, что построение мажоритарных элементов на число входов больше пяти целесообразно на двоичных сумматорах, например, К155ИМ3, К155ИМ2.

3.5. Кодер и декодер кода с числом единиц, кратным трем

Как указано в подразделе 2.2.7, кодовые комбинации в данном коде содержат два контрольных символа, причем если первый \( r_1 \) символ равен 0, то и второй \( r_2 \) тоже должен быть равен 0. Кодирующее устройство для \( k = 5 \) приведено на рис. 3.12.

Рис. 3.12. Кодер кода с числом единиц, кратным трем
Основой кодера является тактируемый счетчик DD3 с коэффициентом счета 3, который подсчитывает число единиц в информационной части. Возможны следующие состояния счетчика:

\[ y_2 y_1 = 00, \]
\[ y_2 y_1 = 01, \]
\[ y_2 y_1 = 10, \]

что соответствует комбинациям контрольных символов соответственно:

\[ r_1 r_2 = 00, \]
\[ r_1 r_2 = 11, \]
\[ r_1 r_2 = 10. \]

Таким образом, формирователь контрольных символов на элементах DD3 и DD4 описывается выражениями \( r_1 = y_2 y_1 + y_2 y_1, r_2 = y_1 \).

Мультиплексор DD2 осуществляет преобразование параллельного кода в последовательный. Процесс кодирования сообщения \( G(x) = k_1 k_2 k_3 k_4 k_5 = 10111 \) показан на рисунке кодера.

Основой декодера (рис. 3.13) является счетчик DD2 с коэффициентом деления 3.

Рис. 3.13. Схема декодера кода с числом единиц, кратным трём
На первых пяти тактах информационные символы заносятся в регистр DD1, а полная кодовая комбинация $F^*(x)$ на 1–7-м тактах поступает в счетчик DD2. Если в кодовой комбинации $F^*(x)$ искажений нет, то после 7-го такта в счетчике будет зафиксирован синдром 00. На выходе элемента DD3 появится 1, которая разрешает вывод информационных символов $k_5$, $k_4$, $k_3$, $k_2$, $k_1$ на такте 8 в приемник информации. В противном случае, при наличии ошибок в $F^*(x)$, на выходе элемента DD3 появится 0, что запретит вывод информации в приемник через элементы $I$ DD5–DD9, а 1 на выходе формирователя DD4 сбросит регистр DD1 в исходное положение. Процесс декодирования кодовой комбинации $F^*(x) = k_1 k_2 k_3 k_4 k_5 r_1 r_2 = 1011111$ показан на рис. 3.13.

3.6. Кодер и декодер инверсного кода

Теоретические вопросы построения данного кода рассмотрены в подразделе 2.2.8, а функциональная схема кодера для четырехразрядных сообщений приведена на рис. 3.14.

![Diagram](attachment:diagram.png)

Рис. 3.14. Кодер инверсного кода для $k=4$

Подлежащее кодирование сообщение записывается в кольцевой регистр DD1, а затем на первых четырех тактах через верхнюю по схеме «2И–ИЛИ» DD3 выдвигается в линию связи и одновременно повторно через вход S1 записывается в регистр DD1. Триггер DD4, работающий в счетном режиме, является сумматором по модулю 2. Спадом 4ТИ через формирователь DD7 производится опрос состояния триггера DD4. Если число единиц в информационной части было четным, то триггер DD4 оказывается в нулевом положении, а следовательно, состояние RS-триггера DD6
не изменится. По-прежнему будет открыта верхняя схема «И» DD3 сигналом Q триттера DD6, и контрольные символы в неизменном виде повторяют информационные, которые на предыдущих четырех тактах поступают в линию связи. Если в информационной части было нечетное число единиц, то тритгер DD4 будет в единичном положении, и спадом 4TI тритгер DD6 тоже устанавливается в 1. Сигнал, снимаемый с выхода Q DD6, открывает нижнюю схему «И» DD3, и вторая часть кодовой комбинации будет поступать в линию связи с выхода регистра через элемент HE DD2, т. е. контрольные символы повторяют информационные в инверсном виде. После передачи всей кодовой комбинации схема устанавливается в исходное положение девятым тактовым импульсом и готова к кодированию следующего полезного сообщения. Состояния элементов схемы при передаче сообщения \( G(x) = k_4k_3k_2k_1 = 1110 \) указано на схеме рис. 3.14.

Функциональная схема декодера 8-разрядных кодовых комбинаций приведена на рис. 3.15. Кодовая комбинация \( F^*(x) \), поступающая из линии связи, заносится в регистр DD1. После чего схемой контроля четности DD3 анализируется первая половина \((k_1 k_2 k_3 k_4)\) комбинации \( F^*(x) \). Если в ней четное число единиц, то с выхода SE DD3 снимается 1, которая открывает верхние схемы «2И» элементов DD4–DD7, и тем самым ко входу сумматоров по модулю 2 DD8–DD11 поступают контрольные символы в прямом виде. В случае, если схемой DD3 будет зафиксировано в первой половине комбинации \( F^*(x) \) нечетное число единиц, то сигнал, равный 1, появляется на выходе S0, который открывает нижние схемы 2И элементов DD4–DD7, и на вход сумматоров по модулю 2 DD8–DD11 поступят контрольные символы в инверсном виде с выхода элементов HE DD2.1–DD2.4. Сумматоры DD8–DD11 осуществляют позлементное сравнение информационного и соответствующего ему контрольного символа. При отсутствии ошибок в комбинации \( F^*(x) \) на выходе всех сумматоров будут нули, а на выходе элемента «\( 4ИЛИ–НЕ \)» появится единица, которая открывает схемы «И» DD14–DD17, и информационные символы поступят в приемник. В случае наличия ошибок в принятой комбинации на выходе элемента «\( 4ИЛИ–НЕ \)» появится ноль, который запретит выдачу информации потребителю через элементы DD14–DD17, а единичный сигнал с выхода формирователя DD13 сбросит приемный регистр DD1 в исходное положение. В результате декодер будет подготовлен к приему следующей кодовой комбинации.

Процесс декодирования кодовой комбинации \( F^*(x) = 0100101 \) показан на рис. 3.15 в виде состояния элементов декодера. В данном случае на выходе сумматоров по модулю 2 DD8–DD11 получим синдром 1110, что свидетельствует о наличии ошибок. В соответствии с этим синдромом на выходе схемы «\( 4ИЛИ–НЕ \)» DD12 появился сигнал, равный 0, который запрещает вывод информационных символов потребителю, а сигнал с выхода DD13 сбросит в исходное состояние приемный регистр DD1.
Рис. 3.15. Декодер инверсного кода
3.7. Кодер и декодер корреляционного кода

Как показано в подразделе 2.2.9, при кодировании в данном коде символ 0 заменяется на 01, а символ 1 – на 10. Данная процедура решается довольно простыми техническими приемами.

Функциональная схема кодера для четырехразрядных сообщений приведена на рис. 3.16.

Рис. 3.16. Кодер корреляционного кода

Символы исходного сообщения \( k_1, k_2, k_3 \) и \( k_4 \) из регистра \( DD1 \) поступают на схемы «HE» \( DD2–DD5 \) и одновременно на нечетные входы мультиплексора \( DD6 \). Проинвертированные символы поступают на нечетные входы мультиплексора. При поступлении управляющих сигналов на адресные входы мультиплексора \( S_0, S_1, S_2 \) от двоичного счетчика он поочередно к выходу подключает входы \( D0–D7 \). А так как попеременно чередуются прямые и их инверсные сигналы, то на выходе получаем корреляционный код. Процесс преобразования сообщения \( G(x) = k_1k_2k_3k_4 \) = 1100 показан на схеме в виде состояния элементов. На выходе мультиплексора получаем кодовую комбинацию \( F(x) = 10100101 \).

Процесс декодирования заключается в поразрядном сравнении двух стоящих рядом символов, относящихся к одному и тому же информационному разряду. Учитывая, что при отсутствии искажений один из них равен 0, а другой, соответствующий ему, – 1, в результате сложения по модулю 2

59
Получим единичный синдром, который указывает на отсутствие искажений. Функциональная схема преобразователя приведена на рис. 3.17.

Преобразователь состоит из входного регистра $DD1$, в который заносится кодовая комбинация из линии связи; устройства поэлементного сравнения, собранного на элементах «исключающее ИЛИ» $DD2–DD5$; дешифратора синдрома на элементе «И» $DD6$; схемы управления сбросом регистра на формирователе «HE» $DD11$; устройства вывода на элементах «И» $DD7–DD10$. При отсутствии ошибок в принятом сообщении на выходе дешифратора синдрома появляется 1, которая разрешает вывод информационных символов через элементы $DD7–DD10$ потребителю.

![Diagram](image)

Рис. 3.17. Декодер корреляционного кода

Если в принятой комбинации $F^*(x)$ имеются ошибки, то на выходе хотя бы одной схемы сумматора по модулю 2 будет 0, который приведет к закрытию схем $I DD7–DD8$, что запретит вывод информационных символов, а единичный сигнал с выхода $DD11$ установит приемный регистр в исходное состояние.

Пример дешифрации кодовой комбинации $F^*(x) = 10100101$ показан на схеме в виде состояния элементов. В данном случае дешифратор синдрома не зарегистрировал ошибок, и к потребителю поступил кодовая комбинация 1100, которая соответствует переданному сообщению (см. рис. 3.16).
3.8. Кодер и декодер кода Бергера

Функциональная схема кодера приведена на рис. 3.18. В состав кодирующего устройства входят: входной регистр DD1, предназначенный для хранения преобразуемых сообщений, счетчик DD5 для подсчета числа единиц в исходном сообщении и преобразователь DD2 параллельного кода в последовательный.

![Diagram](image)

Рис. 3.18. Кодер кода Бергера для \( k = 5 \)

Исходная кодовая комбинация, представляющая, как правило, двоичный неизбыточный код, через мультиплексор DD2 поступает на выход и одновременно через схему \( \text{I} \) DD4 на вход счетчика DD5, который в данном случае подсчитывает число единиц в передаваемом сообщении. После прохождения информационных \( k \) символов спадом пятого тактового импульса триггер DD3 устанавливается в 0, схема \( \text{I} \) DD4 закрывается и контрольные символы из счетчика DD5 через мультиплексор DD2 поступают в линию связи.

Процесс кодирования кодовой комбинации \( G(x) = 11010 \) в виде состояния элементов кодера показан на схеме рис. 3.18.
Декодирование сводится к определению числа единиц в информационной части, т. е. к формированию контрольных символов из пришедших на приемную сторону информационных символов, с последующим сравнением этой последовательности контрольных символов с контрольными символами, поступившими из линии связи. В случае их совпадения, что говорит об отсутствии ошибок, информационные символы поступают потребителю. Схема декодера приведена на рис. 3.19.

Рис. 3.19. Декодер кода Бергера

Кодовая комбинация в коде Бергера записывается в регистр DD4. На первых пяти тактах счетчиком DD3 подсчитывается число единиц в информационных символах. После этого сумматорами по модулю 2 DD5.1 – DD5.3 складываются две последовательности контрольных символов, записанных в регистре DD4 и зафиксированных счетчиком DD3. При полном их совпадении, что говорит об отсутствии ошибок, на выходе «Н/Н–HE» DD6 появляется 1, которая открывает элементы И DD7–DD11, и информационные символы поступают потребителю. В случае несоответствия двух последовательностей контрольных символов на выходе формирователя DD12 появляется 1, которая сбрасывает приемный регистр DD4 в исходное положение, а сигнал, равный 0, на выходе DD6 запрещает выдачу информационных символов потребителю. Процесс декодирования кодовой комбинации $F^*(x) = 11010101$ показан на схеме в виде состояния элементов.
тов. Элементами DD5.1–DD5.3 зафиксировано несогласование двух последовательностей, в результате чего комбинация бракуется.

3.9. Кодирующее и декодирующее устройства систематического кода

Как следует из подраздела 2.3.1, алгоритм кодирования и декодирования определяется составом образующей и проверочной матриц. На рис. 3.20 приведена схема кодера, использующего алгоритм, полученный по выражениям (2.12)–(2.14):

\[
\begin{align*}
     a_5 &= a_2 \oplus a_3 \oplus a_4; \\
     a_6 &= a_1 \oplus a_2 \oplus a_4; \\
     a_7 &= a_1 \oplus a_3 \oplus a_4.
\end{align*}
\]

![Рис. 3.20. Кодер систематического кода, исправляющего одиночные ошибки](image)

Сумматорами по модулю два DD2, DD3, DD4 формируются контрольные символы \( r_1, r_2 \) и \( r_3 \) в соответствии с выражениями (2.12)–(2.14). Преобразователем параллельного кода в последовательный DD5 сначала в линию связи выдвинуты информационные символы \( k_1, k_2, k_3, k_4 \), а затем контрольные \( r_1, r_2, r_3 \).

На этом процесс кодирования данной комбинации заканчивается, и кодер ожидает поступления в регистр DD1 следующего кодового сообщения. Порядок формирования комбинации \( F(x) \) показан на схеме в виде состояния элементов кодера для сообщения \( G(x) = 1100 \).
Декодирование заключается в определении синдрома по выражениям (2.17):

\[
S_1 = a_2 \oplus a_3 \oplus a_4 \oplus a_5; \\
S_2 = a_1 \oplus a_2 \oplus a_4 \oplus a_6; \\
S_3 = a_1 \oplus a_3 \oplus a_4 \oplus a_7.
\]

Если синдром будет нулевого порядка, то ошибок нет, в противном случае синдром должен указать номер искаженного разряда.

Декодер систематического (7,4) кода показан на рис. 3.21.

Рис. 3.21. Декодер систематического кода (7, 4) для исправления одиночных ошибок

Кодовая комбинация из линии связи записывается в регистр DD1 и поступает на входы определяителя синдрома, собранного на элементах DD2, DD3, DD4. На сумматоре по модулю 2 DD2 осуществляется вычисление S1, на DD3 – S2, на DD4 – S3. Далее сигналы с определятеля синдрома S1S2S3 поступают на дешифратор синдрома, собранный на элементах «I» DD5, DD6, DD7, DD8, каждый из которых настроен на кодовую комбинацию (2.18), соответствующую одному из информационных символов

\[
a_1 = k_1, a_2 = k_2, a_3 = k_3, \text{ и } a_4 = k_4.
\]

Дешифратора синдрома для контрольных символов в схеме не предусмотрено, так как исправление контрольных символов не влияет на информацию, поступающую потребителю. При отсутствии ошибок на выходах всех элементов «I» DD5–DD8 будут 0, которые не влияют на вывод информационных символов.
При наличии ошибки в одном из информационных символов комбинации \( F^*(x) \) на выходах соответствующего элемента «И» \( DD5–DD8 \) появится единичный сигнал, который при прохождении информационного символа через выходной сумматор по модулю 2 \( DD9–DD12 \) изменит его на противоположный. Процесс декодирования кодовой комбинации \( F^*(x) = \overline{1000101} \) показан на схеме в виде состояния отдельных элементов. В данном случае зафиксировано искажение символа \( k_2 \), который скорректирован выходным сумматором по модулю 2 \( DD10 \) с 0 на 1.

3.10. Кодирующее и декодирующее устройство кода Хемминга

Принцип построения кодирующего устройства не зависит от числа информационных разрядов передаваемого кода. Поэтому рассмотрим схему кодирующего устройства (рис. 3.22) для числа информационных символов \( k = 4 \), контрольных символов \( r = 4 \) и \( d = 4 \), хотя она без принципиальных изменений может быть использована для кодирования любого числа \( k \) за счет увеличения числа сумматоров по модулю 2 и числа входов отдельных элементов.

Кодер состоит из входного регистра \( DD1 \), куда записываются комбинации, подлежащие кодированию; формирователя контрольных символов на элементах \( DD2–DD5 \) и преобразователя параллельного кода в последовательный на мультиплексоре \( DD6 \).

В соответствии с методикой формирования контрольных символов, изложенной в подразделе 2.3.2, можно записать, что

\[
\begin{align*}
  r_1 &= k_4 \oplus k_3 \oplus k_2; \\
  r_2 &= k_4 \oplus k_2 \oplus k_1; \\
  r_3 &= k_3 \oplus k_2 \oplus k_1; \\
  r_4 &= k_4 \oplus k_3 \oplus k_2 \oplus k_1 \oplus r_1 \oplus r_2 \oplus r_3.
\end{align*}
\]

Согласно этим выражениям осуществляется подключение входов сумматоров по модулю 2 к информационным шинам \( k_1–k_4 \). Порядок подачи информационных и контрольных символов на вход мультиплексора, а следовательно, и очередность их передачи в линию связи может быть различна – сначала информационные, а потом контрольные или наоборот, или классический вариант – на местах, кратных \( 2i \), где \( i = 0, 1, 2, \ldots, r \), контрольные, а на остальных – информационные.

Порядок кодирования комбинации \( G(x) = k_4 k_3 k_2 k_1 = 1011 \) показан на рис. 3.22 в виде состояния элементов. В результате в линию связи поступит кодовая комбинация \( F(x) = 01100110 \) с классическим порядком следования контрольных и информационных символов.

Декодирование заключается в нахождении ошибок, их исправлении и выводе полезной информации потребителю. Схема декодера для кода (8,4), позволяющего исправлять одиночные и обнаруживать двойные
ошибки, приведена на рис. 3.23. Декoder состоит из входного регистра DD1, определителя синдрома S1S2S3 на элементах DD2–DD4, определителя общей проверки на четность SS на элементе DD15, дешифратора синдрома S1S2S3 на элементе DD5, дешифратора двойной ошибки на элементе «I» DD6, устройства коррекции ошибок на элементах «исключающее ИЛИ» DD7–DD10 и устройства вывода на элементах «I» DD11–DD14.

Рис. 3.22. Кодер кода Хемминга с d = 4

Входы определителя синдрома DD2–DD4 подключаются в соответствии с принятым алгоритмом кодирования. Для кода (8,4) сумматор по модулю 2 DD2 осуществляет проверку S1 = r1 \( \oplus \) k4 \( \oplus \) k3 \( \oplus \) k1, сумматор DD3 – S2 = r2 \( \oplus \) k4 \( \oplus \) k2 \( \oplus \) k1, сумматор DD4 – S3 = r3 \( \oplus \) k3 \( \oplus \) k2 \( \oplus \) k1. Общая проверка на четность принятой кодовой комбинации производится сумматором DD15 – S = r1 \( \oplus \) r2 \( \oplus \) k4 \( \oplus \) r3 \( \oplus \) k3 \( \oplus \) k2 \( \oplus \) k1 \( \oplus \) r4. Дешифратор синдрома представляет обычный дешифратор двоичного кода 4-2-1 в десятичный.

В данном дешифраторе DD5 показаны прямые выходы, соответствующие информационным символам, и инверсный выход 0, на котором
нулевой сигнал появляется только в случае, когда \( S_1 = 0, S_2 = 0, S_3 = 0 \); выходы, соответствующие контрольным символам, не показаны, так как их коррекция не производится. На выходе дешифратора двойной ошибки, элементе «2И–НЕ» DD6, сигнал 0 (запра) появляется только в том случае, когда на инверсном выходе DD15 будет 1 и на выходе 0 дешифратора DD5 тоже будет 1. Этот сигнал поступает на один из входов схем «И» DD11–DD14 и запрещает выдачу информации потребителю.

Рис. 3.23. Декодер кода Хемминга, позволяющего исправлять одиночные ошибки и обнаруживать двойные

При всех других соотношениях \( S_1 \) и \( S_2 \), указанных в подразделе 2.3.2, на выходе «I» DD6 будет сигнал, равный 1.

Процесс декодирования кодовой комбинации \( F^*(x) = 01\hat{0}1\hat{0}110 \) показан на схеме в виде состояния элементов. В данном случае на выходе схемы «I» DD6 будет 0, а следовательно, схемы «I» DD11–DD14 будут закрыты, информация потребителю не поступит и будет включен индикатор HLR, свидетельствующий о двойной ошибке.
4. ПЕРЕДАЧА ИНФОРМАЦИИ ПРИ ВОЗДЕЙСТВИИ ПОМЕХ

4.1. Структурная схема передачи информации

Специфика различных областей применения систем передачи информации требует различного подхода к реализации таких систем. Система передачи по телефонным каналам связи, например, совершенно не похожа на систему космической связи или тропосферной ни по техническому исполнению, ни по параметрам. Однако в принципах построения и назначении отдельных устройств самых разных систем много общего. В общем случае схема системы передачи информации показана на рис. 4.1 [3].

Можно передавать самые различные по физической природе сообщения: цифровые данные, полученные от ЭВМ, речь, тексты телеграмм, команды управления, результаты измерений различных физических величин. Естественно, что все эти сообщения предварительно должны быть преобразованы в электрические колебания, сохраняющие все свойства исходных сообщений, а затем унифицированы, т.е. представлены в формах, удобной для последующей передачи. Под источником информации на рис. 4.1 понимается устройство, в котором выполнены все названные нами ранее операции.

![Структурная схема передачи информации](image)

Рис. 4.1. Структурная схема передачи информации

Для более экономного использования линии связи, а также для уменьшения влияния различных помех и искажений передаваемая от источника информация может быть в дальнейшем преобразована с помощью кодирующего устройства.

В результате ряда преобразований на выходе кодирующего устройства образуется последовательность элементов, которая с помощью передатчика преобразуется в форму, удобную для передачи по линии связи.
Линия связи – это среда, по которой происходит передача сигналов от передатчика к приемнику. Учет влияния среды необходим. В теории передачи информации часто встречается понятие «канал связи» – это совокупность средств, обеспечивающих передачу сигналов.

На вход приемника, кроме сигналов, прошедших среду, попадают также различные помехи. Приемник выделяет из смеси сигнала и помех последовательность, которая должна соответствовать последовательности на выходе кодирующего устройства. Однако из-за действия помех, влияния среды, погрешностей различных преобразований полное соответствие получить невозможно. Поэтому такая последовательность вводится в декодирующее устройство, которое выполняет операции по ее преобразованию в последовательность, соответствующую переданной. Полнота этого соответствия зависит от ряда факторов: корректирующих возможностей кодированной последовательности, уровня сигнала и помех, а также их статистики, свойств декодирующего устройства.

Сформированная в результате декодирования последовательность поступает к получателю информации. Естественно, что при проектировании систем передачи информации всегда стремятся обеспечить такие условия работы, чтобы отличие информации, получаемой от источника, от информации, передаваемой получателю, было невелико и не превышало некоторой допустимой величины. В данном случае основным показателем качества передачи является достоверность передачи информации – степень соответствия принятого сообщения переданному [3].

Численно достоверность передачи информации характеризуется коэффициентом ошибок:

\[ K_{ош} \approx \frac{N_{ош}}{N}, \]  
(4.1)

где \( N_{ош} \) – количество неверно принятых сообщений; \( N \) – общее количество переданных сообщений.

При увеличении \( N \) коэффициент ошибок стремится к вероятности ошибочного приема или просто к вероятности ошибки:

\[ P_{ош} \approx \lim_{N \to \infty} \frac{N_{ош}}{N}, \]  
(4.2)

4.2. Помехи и ошибки в каналах связи

При передаче по каналу связи информация подвергается воздействию различного рода помех, наиболее широко известные флуктуационные, гармонические и импульсные помехи. Флуктуационная помеха представляет собой напряжение, меняющееся во времени случайным образом (рис. 4.2, а). Причина появления ее – тепловые шумы, возникающие в линии связи, элементах аппаратуры...
и т. д. Гармоническая помеха (рис. 4.2, б) приближенно описывается синусоидальным колебанием \( U_{\text{ном}} = V \sin(\omega t + \varphi) \). Эти помехи возникают, как правило, в самой аппаратуре из-за паразитного проникновения в канал различных несущих колебаний.

Импульсной помехой называется помеха, пиковое значение которой соизмеримо с амплитудой полезного сигнала или превышает ее. Типичный вид одиночной импульсной помехи показан на рис. 4.2, в. Импульсные помехи обычно появляются пачками, по нескольку помех в пачке (рис. 4.2, г). Характер процесса появления пачек во времени и отдельных помех внутри одной пачки существенно изменяется от канала к каналу и даже в одном канале в различные периоды времени [3].

![Diagram](image)

Рис. 4.2. Различные виды помех

По типу источников импульсные помехи можно разделить на три основные группы:

а) естественного происхождения;
б) промышленные;
в) возникающие в аппаратуrze.

К помехам естественного происхождения в первую очередь следует отнести атмосферные помехи, основным источником которых являются грозовые разряды, хаотически возникающие во многих участках земного шара. Каждый такой разряд создает несколько мощных импульсов электрического тока.

Источники промышленных помех многочисленны. К ним относятся различные коллекторные электрические машины, двигатели, аппараты, линии электропередачи, электросварка.

Кроме классификации помех по характеру воздействия на передаваемое сообщение, их классифицируют по поведению во времени. Флуктуационные и гармонические помехи действуют непрерывно в течение длительных отрезков времени. Их можно назвать постоянно действующими. В от-
личие от них импульсные помехи действуют на сигнал только в отдельные моменты. Помехи такого типа называются сосредоточенными во времени.

В результате действия помех в канале связи информация, передаваемая по этому каналу, искажается, принятное сообщение будет отличаться от переданного, т. е. сообщение принимается с ошибкой. Возникновение ошибок — случайный процесс, и предсказать появление их заранее, до эксперимента, можно только статистически, т. е. указывая вероятности того, что ошибка либо произойдет, либо нет. При этом вероятность ошибки может не зависеть от значения передаваемого элементарного символа 0 или 1, т. е. среди неправильно принятых сигналов одинаково часто встречаются как 1, так и 0.

Кanal связи с такими ошибками называется симметричным каналом. Условно такой канал показан на рис. 4.3. Здесь входными являются символы 0 и 1. Возможными выходными символами также будут 0 и 1. Вероятности $P_1$, $P_2$ определяют вероятность неискаженной передачи символов 0 и 1 соответственно, а вероятности $(1 - P_1)$, $(1 - P_2)$ — вероятность трансформации символов. При $P_1 = P_2$ канал является симметричным.

Другим примером канала связи с помехами может служить так называемый канал со стириением (рис. 4.4). На вход такого канала поступают двоичные символы, которые с вероятностью $P$ передаются правильно и с вероятностью $(1 - P)$ стираются (стертые символы условно обозначены через $x$).

Рис. 4.3. Канал с искажениями символов 0 и 1

Рис. 4.4. Канал со стириением символов
Таким образом, если на вход канала поступают символы 0 и 1, то на выходе получают три различных символа – 0, 1, х. В этом канале предполагается отсутствие трансформации символов. Такое предположение на практике не всегда оправдывается. Поэтому используется модель стирающего канала, в которой допустима трансформация символов (рис. 4.5). Если условия передачи ряда последовательных символов не зависят один от другого, то такой канал называется каналом без памяти. Если же условия передачи символа зависят от предыдущих состояний канала, канал называется каналом с памятью.

Рис. 4.5. Канал со стиранием и трансформацией символов

Экспериментальные исследования каналов связи [3], произведенные в СССР и за рубежом, показали, что ошибки символов при передаче по каналу связи, как правило, группируются в пачки (пакеты различной длительности).

Пачкой ошибок называется участок последовательности, начинающийся и кончающийся ошибочно принятыми элементами. Внутри пачки могут быть и правильно принятые элементы. Например, если в процессе передачи последовательности 011010011 последняя приобретает вид 0010101001, то говорят, что она поражена пачкой ошибок длиной в восемь разрядов. Здесь поражены второй, седьмой, восьмой и девятый разряды.

Сказанное ранее позволяет сделать вывод о том, что в результате действия помех в каналах связи при передаче сообщений возникают ошибки. В зависимости от количества разрядов передаваемой последовательности, принимаемых с ошибками, различают однократные, двукратные и т.д. ошибки. Кроме этого имеют место пачки ошибок. Знание характера распределения ошибок в канале связи позволяет правильно выбрать метод передачи сообщений по данному каналу.

Если ошибки, возникающие в передаваемом сообщении, происходят независимо одна от другой, их распределение подчиняется биномиальному закону. В этом случае предполагается, что вероятность поражения каждого символа $p$, передаваемой последовательности является величиной постоянной. Тогда вероятность безошибочного его приема – $(1 - p)$, а вероят-
нность распределения ошибок при передаче последовательности из \( n \) символов:

\[
P = \sum_{i=0}^{n} C_n^i p_s^i (1 - p_s)^{n-i},
\]

(4.3)

где \( i \) – кратность ошибки в последовательности;

\[
C_n^i \quad \text{– число сочетаний из } n \text{ по } i:
\]

\[
C_n^i = \frac{n(n-1)(n-2)\ldots(n-i+1)}{i!}.
\]

(4.4)

Каждый член суммы \( C_n^i, p_s^i, (1 - p_s)^{n-i} \) в формуле (4.3) характеризует вероятность появления \( i \) – кратной ошибки в передаваемой последовательности [3].

Следует отметить, что в реальных условиях ошибки, появляющиеся в передаваемой информации, в большинстве случаев являются зависимыми (коррелированными) и сгруппированы в пачки. Результаты экспериментальных исследований показали, что время группирования ошибок в пачки составляет ничтожные доли всего времени передачи, но в течение этого времени сосредоточено наибольшее число ошибок. В интервалах же между пачками возникают редкие независимые ошибки [3]. Поэтому оценка качества связи на основе биномиального закона распределения ошибок является приближенной. Законы распределения ошибок в каналах связи изучаются преимущественно экспериментальным путем и на основании этого создаются математические модели каналов связи.

### 4.3. Передача информации по каналу без помех

Если через канал связи без помех передается последовательность дискретных сообщений длительностью \( T \), то предел отношения

\[
\lim_{T \to \infty} \frac{I}{T} = V \left[ \text{бит/с} \right],
\]

(4.5)

где \( I \) – количество информации, содержащейся в последовательности сообщении (скорость передачи информации по каналу связи).

Пределное значение скорости передачи информации называется пропускной способностью канала связи:

\[
C = V_{\text{макс}} = \lim_{T \to \infty} \frac{I_{\text{макс}}}{T} \left[ \text{бит} \ (\text{дв. ед.}) / \text{с} \right].
\]

(4.6)

Как известно, количество информации в сообщениях максимально при равной вероятности состояний. Тогда

\[
C = \lim_{T \to \infty} \frac{n \log_2 m}{T}.
\]

(4.7)
Скорость передачи информации в общем случае зависит от статистических свойств сообщения и параметров канала связи. Пропускная способность — это характеристика канала связи, которая не зависит от скорости передачи информации. Количественно пропускная способность канала связи выражается максимальным количеством двоичных единиц информации, которое данный канал связи может передать за одну секунду.

Для наиболее эффективного использования канала связи необходимо, чтобы скорость передачи информации была как можно ближе к пропускной способности канала связи.

Если скорость поступления информации на вход канала связи превышает пропускную способность канала, то по каналу будет передана не вся информация, т. е. должно выполняться условие

$$V \leq C.$$  \hspace{1cm} (4.8)

Это основное условие согласования источника информации и канала связи. Согласование осуществляется путем соответствующего кодирования сообщений. Доказано, что, если скорость информации, вырабатываемой источником сообщений, достаточно близка к пропускной способности канала, т. е. $V_a = C - \varepsilon$, где $\varepsilon$ — сколь угодно малая величина, всегда можно найти такой способ кодирования, который обеспечит передачу сообщений, вырабатываемых источником, причем скорость передачи информации будет весьма близка к пропускной способности канала. Обратное утверждение заключается в том, что невозможно обеспечить длительную передачу всех сообщений, если поток информации, вырабатываемый источником, превышает пропускную способность канала.

Если на вход канала подключён источник сообщений с энтропией на символ, равной пропускной способности канала связи, считается, что источник согласован с каналом. Если энтропия источника меньше пропускной способности канала, что может быть в случае неравновероятности состояний источника, то источник не согласован с каналом связи, т. е. канал используется не полностью.

Согласование в статистическом смысле достигается с помощью так называемого статистического кодирования. Для уяснения принципа статистического кодирования рассмотрим две последовательности сообщений, представляющие, например, записанные через равные промежутки времени сигналы о состоянии двухпозиционного контролируемого объекта (включен или выключен):

$$110010111101000111010100010100;$$

$$001000000110000000000000000000.$$  

Символу 1 соответствует сигнал «объект включен», символу 0 — «объект выключен». Будем считать, что символы появляются независимо один от другого. Для первой последовательности символы 1 и 0 равновероятны, для второй — вероятность первого символа $P_I = 0,1$, второго символа $1 - P_I = 0,9$. 

74
4.4. Передача информации по каналу с помехами

При передаче информации через канал с помехами сообщения искажаются и на приемной стороне нет полной уверенности в том, что принято именно то сообщение, которое передавалось. Следовательно, сообщение недостоверно, вероятность его после приема не равна единице.

В этом случае количество получаемой информации уменьшается на величину неопределенности, вносимой помехами, т. е. определяется как разность энтропии сообщения до и после приема. Уменьшение количества получаемой информации вследствие действия помех рассмотрим на примере передачи сообщений о состоянии двухпозиционного контролируемого объекта (включен, выключен).

Пусть вероятности включенного и выключенного состояния соответственно равны: \( P_1 = P_2 = 0.5 \). Вероятность того, что при передаче состояния «выключено» принимается информация о включенном состоянии, равна \( P_1(2) = 0.01 \). Соответственно другие условные вероятности следующие: \( P_2(2) = 0.99; \ P_2(1) = 0.01; \ P_1(1) = 0.99 \), где величина \( P_i(j) \) – условная вероятность того, что при передаче \( j \)-го сообщения будет принято сообщение \( i \).

Таким образом, за счет вносимых помех количество информации уменьшается: \( I = H_i - H_j(i) = 1 - 0.081 = 0.919 \) [бイト]. Разделив \( I \) на время \( T \) передачи одиночного сообщения, получим выражение для скорости передачи по каналу связи с помехами:

\[
V' = \lim_{T \to \infty} \frac{1}{T} = \lim_{T \to \infty} \frac{H_i - H_j(i)}{T}.
\]

Пропускной способностью канала с шумами называется максимальная скорость передачи информации на символ или в единицу времени при условии, что канал связи без помех согласован с источником информации:

\[
C = V_{\text{макс}} = \lim_{T \to 0} I_{\text{макс}} iT.
\]

Если энтропия источника информации не превышает пропускной способности канала \( H < C \), то существует код, обеспечивающий передачу информации через канал с помехами со сколь угодно малой частотой ошибок или сколь угодно малой недостоверностью.
5. СИНТЕЗ И АНАЛИЗ КОМБИНАЦИОННЫХ УСТРОЙСТВ
В СИСТЕМАХ ОБЕСПЕЧЕНИЯ ДВИЖЕНИЯ ПОЕЗДОВ

5.1. Общие положения о выполнении курсовой работы

Выполнение курсовой работы имеет цель углубления, систематиза-
ции, закрепления теоретических знаний и приобретения навыков:
– кодирования телемеханической информации с использованием
различных видов кодов;
– синтеза комбинационных устройств (кодера, декодера);
– подбора и использования учебной и справочной литературы.
Основное содержание курсовой работы составляет построение кода
заданной телемеханической информации и на его основе синтез кодера и
декодера. Студент должен самостоятельно выполнить курсовую работу и
сдать ее на проверку в установленный срок.
При выставлении оценки за выполненную курсовую работу учиты-
ваются:
– обоснованность принятых решений и правильность выполнения
расчетов;
– качество оформления текстовой и графической частей работы, со-
блюдение требований стандартов;
– качество защиты выполненной курсовой работы.

5.2. Оформление курсовой работы

Оформление текстовой и графической частей курсовой работы
должно соответствовать действующим требованиям к текстовым докумен-
tам и электрическим схемам. При выполнении и оформлении курсовой ра-
боты необходимо придерживаться следующей структуры:
а) титульный лист, на котором указываются название учебного заве-
dения, наименование кафедры, вид выполняемого задания, тема курсовой
работы, фамилия, инициалы студента, номер учебной группы, фамилия и
инициалы преподавателя – руководителя курсовой работы;
б) оглавление;
в) введение, в котором следует кратко описать необходимость и важ-
ность применения помехозащищенных кодов для передачи информации в
телемеханических системах, обеспечении бесперебойности и безопасности
движения поездов;
г) задание и исходные данные по варианту задания;
д) результаты выполненного задания на курсовую работу;
е) выводы по проделанной работе;
ж) список использованной литературы.
Общий объем курсовой работы не должен превышать 20 листов
формата A4.
5.3. Задание на курсовую работу

В ходе выполнения курсовой работы необходимо:
- построить заданный код для передаваемого сообщения;
- провести расчет корректирующих способностей построенного кода;
- провести структурный синтез кодирующего устройства (кодера);
- определить проверочные соотношения (синдромы) для построенного кода;
- провести структурный синтез декодирующего устройства (декодера);
- исследовать корректирующие способности синтезированного декодера при введении заданных искажений кодовых комбинаций с использованием проверочных соотношений;
- рассчитать вероятности ошибок при передаче сообщений в каналах с независимыми и пакетными ошибками;
- оформить пояснительную записку с результатами синтеза и исследований кодера и декодера информации.

5.4. Исходные данные и порядок выполнения курсовой работы

В качестве исходных данных для выполнения курсовой работы принимаются следующие условия:

а) для передачи сообщений в кодовых комбинациях использовать четыре информационных разряда, которые позволяют передать \( S = 2^4 = 16 \) возможных сообщений;

б) кодируемое передаваемое сообщение представляет собой двоичное четырехразрядное число, получаемое преобразованием в двоичный код суммы предпоследней цифры номера зачетной книжки студента и последней цифры текущего года;

в) используемый для кодирования сообщения избыточный код выбирается по сумме двух последних цифр номера зачетной книжки студента из табл. 5.1.

Таблица 5.1

<table>
<thead>
<tr>
<th>№ п/п</th>
<th>Сумма чисел номера зачетной книжки студента</th>
<th>Избыточный код</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Простое число (не разлагаемое на сомножители нечетное число)</td>
<td>Модифицированный код Бауэра</td>
</tr>
<tr>
<td>2</td>
<td>Разлагаемое на сомножители нечетное число</td>
<td>Инверсный код (код Бауэра)</td>
</tr>
<tr>
<td>3</td>
<td>Четное число, причем обе последние цифры шифра есть нечетные числа</td>
<td>Код Хемминга (семиразрядный)</td>
</tr>
<tr>
<td>4</td>
<td>Четное число, причем обе последние цифры шифра есть четные числа</td>
<td>Модифицированный код Хемминга</td>
</tr>
</tbody>
</table>
При исследовании корректирующих способностей избыточного кода на входе декодера следует сформировать следующие типы искажений кодовой комбинации:

- одиночная ошибка в информационных разрядах;
- одиночная ошибка в контрольных разрядах;
- двойная ошибка в информационных разрядах;
- двойная ошибка в контрольных разрядах;
- одиночная ошибка в информационных разрядах одновременно с одиночной ошибкой в контрольных разрядах;
- тройная ошибка в кодовой комбинации.

Выбор искажаемых разрядов для получения каждого из типов искажений кодовой комбинации осуществляется студентом по своему усмотрению.

Также в работе необходимо привести расчеты вероятности ошибок при передаче сообщений в каналах с независимыми и пакетными ошибками. Вероятность ошибок при передаче сообщений вычисляется с учетом типа используемых каналов, соответствующих цифрам номера зачетной книжки студента по вариантам, представленным в табл. 5.2;

Таблица 5.2

<table>
<thead>
<tr>
<th>Последняя цифра номера зачетной книжки</th>
<th>Предпоследняя цифра номера зачетной книжки</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Нечетная</td>
</tr>
<tr>
<td></td>
<td>Четная</td>
</tr>
<tr>
<td>0</td>
<td>Кабельный телефонный канал</td>
</tr>
<tr>
<td>1</td>
<td>Радиорелейный телефонный канал</td>
</tr>
<tr>
<td>2</td>
<td>Радиотелеррафный КВ-канал</td>
</tr>
<tr>
<td>3</td>
<td>Тропосферный телефонный канал</td>
</tr>
<tr>
<td>4</td>
<td>Радиорелейный канал</td>
</tr>
<tr>
<td>5</td>
<td>Кабельный телефонный канал</td>
</tr>
<tr>
<td>6</td>
<td>Радиорелейный телефонный канал</td>
</tr>
<tr>
<td>7</td>
<td>Радиотелерграфный КВ-канал</td>
</tr>
<tr>
<td>8</td>
<td>Тропосферный телефонный канал</td>
</tr>
<tr>
<td>9</td>
<td>Радиорелейный канал</td>
</tr>
</tbody>
</table>

По результатам исследования кодирующего и декодирующего устройств:
- привести краткие пояснения по синтезу структурных схем кодера и декодера;
- изобразить структурные схемы кодера и декодера;
- привести расчеты и оформить в виде таблицы результаты исследования корректирующих способностей заданного вариантом кода;
- сформулировать выводы о выполненной курсовой работе.
5.5. Краткие теоретические сведения

Процесс преобразования сообщения для передачи по каналу связи средствами телемеханики называется кодированием. Процесс обратного преобразования сигнала в сообщение на приемной стороне называется декодированием.

Каждому сообщению до преобразования его в соответствующую кодовую комбинацию в устройстве телемеханики соответствует определенное двоичное число, состоящее из $k$ разрядов (исходный двоичный код), с помощью которого идентифицируется то или иное сообщение. Исходный $k$-разрядный двоичный код позволяет хранить в памяти телемеханического устройства $2^k$ различных сообщений. Таким образом, для представления сообщений можно использовать все возможные комбинации двоичного числа. Но для представления $S$ сообщений достаточно использовать число двоичных разрядов, равное

$$k = \lceil \log_2 S \rceil,$$

где прямым скобкам соответствует большее значение целого десятичного числа.

Например, при $S = 13$ $k = \lceil \log_13 \rceil = 3.7 \approx 4$, т. е. достаточно иметь 4 разряда двоичного числа. При этом максимальное число возможных комбинаций 4-разрядного двоичного числа составляет $2^4 = 16$. Следовательно, 3 комбинации двоичного числа, равные разности максимального числа возможных комбинаций и числа используемых сообщений, являются лишними и не используются для представления сообщений.

Каждой комбинации значений двоичного числа соответствует его десятичный эквивалент, который определяется следующим образом. Допустим, что мы имеем $k$-разрядный исходный двоичный код в виде комбинации следующих переменных:

$$x_{k-1}, ..., x_1, x_0.$$

Каждая переменная может принимать только два значения 0 или 1. Каждый разряд двоичного числа имеет свой «вес». Нулевому значению любой переменной соответствует вес, равный нулю, а единичному значению разряда соответствует десятичное число, значение которого зависит от номера разряда и равно $2^{k-i}$. Десятичный эквивалент двоичного числа равен сумме весов всех разрядов, имеющих единичное значение.

Так, двоичному 4-разрядному числу 1001 соответствует десятичное число:

$$2^3 + 0 + 0 + 2^0 = 9.$$

Таким образом, каждому сообщению соответствует конкретное десятичное число, записанное в двоичной форме. Следовательно, при передаче по каналу связи какого-либо сообщения требуется без искажений передать и правильно принять соответствующее данному сообщению десятичное число.
Кодирование сообщения, которое требуется передать по каналу связи, заключается в том, что в кодовую комбинацию помимо $k$ разрядов исходного кода (информационных разрядов) дополнительно включают $r$ избыточных (контрольных) разрядов. В результате кодирования передаваемому сообщению будет соответствовать не $k$-разрядная кодовая комбинация значений исходного двоичного кода, а $(k + r)$-разрядное двоичное число.

Добавление контрольных разрядов в исходную кодовую комбинацию позволяет не только защитить передаваемое сообщение от возможных его искажений, но и в определенных условиях устранить искажение (восстановить информацию).

Для устранения искажений составляются определенным образом проверочные соотношения между переменными информационных и контрольных разрядов в виде аналитических формул по числу контрольных разрядов. Проверочные соотношения получили название синдромов. Количество синдромов определяется количеством контрольных разрядов в передаваемом сообщении. По значению синдромов, представляющих собой двоичное число с числом разрядов, равных числу проверочных соотношений можно судить не только о характере искажения, если оно имеется, но и о номере конкретного разряда, в котором произошло искажение.

Рассмотрим различные способы кодирования сообщений и принципы их декодирования на конкретных примерах.

Коды, позволяющие обнаружить и исправить ошибки в кодовых комбинациях, называются помехозащищенными или корректирующими кодами. Они делятся на две группы: коды с обнаружением ошибок и коды с обнаружением и исправлением ошибок.

При наличии ошибок кратностью $t$ в принятой кодовой комбинации, она отличается от переданной кодовой комбинации значениями $t$ переменных или, что одно и то же, значениями $t$ разрядов.

Минимальное число $d$ элементов, в которых одна кодовая комбинация двоичного кода отличается от другой, называется минимальным кодовым расстоянием данного кода $d_{min}$.

В помехозащищенных кодах, позволяющих обнаружить факт искажения принимаемых кодовых комбинаций при наличии любых ошибок кратностью $t$ и менее, минимальное кодовое расстояние между всеми параметризованными (входящими в число разрешенных) кодовыми комбинациями должно быть на единицу больше кратности ошибок, т. е. $d_{min} \geq t + 1$.

В этом случае искаженная кодовая комбинация будет входить в состав запрещенных для использования комбинаций и отличаться от любой разрешенной кодовой комбинации хотя бы в одном разряде. Благодаря этому обнаруживается искажение кодовой комбинации.

Поэтому принцип обнаружения ошибок при декодировании заключается в проверке кодового расстояния $d$ принятой кодовой комбинации по
отношению к разрешенным. Оно должно быть не менее минимального кодового расстояния разрешенных комбинаций: \( d \geq d_{\text{min}} \).

Кодовое расстояние между двумя любыми комбинациями двоичного кода определяется путем подсчета числа единиц, получаемых при сложении одноименных разрядов комбинаций по модулю 2. Сложение по модулю 2 обозначается символом \( \oplus \) и производится по следующему логическому правилу:

\[
\begin{align*}
1 \oplus 0 &= 1; \\
0 \oplus 1 &= 1; \\
0 \oplus 0 &= 0; \\
1 \oplus 1 &= 0.
\end{align*}
\]

Например, необходимо определить кодовое расстояние двух комбинаций значений 4-разрядного двоичного кода, например, 1001 и 0101. Произведем поразрядное сложение по модулю 2 1001 \( \oplus \) 0101 = 1100. Из полученного результата сложения следует, что искомое число единиц равно 2, т. е. кодовое расстояние \( d = 2 \).

Допустим, что все комбинации с кодовым расстоянием \( d = 2 \) и более относятся к разрешенным комбинациям, но в одной из них при передаче произошло искажение одного разряда, например, вместо 0101 на приемной стороне получили 0001. Применяя к предыдущему примеру сложение по модулю 2, получим 1001 \( \oplus \) 0001 = 1000. Таким образом, принятая кодовая комбинация по отношению к одной из разрешенных имеет минимальное кодовое расстояние, равное 1, следовательно, она не может относиться к числу разрешенных комбинаций и является ошибочной.

Однако указать номер разряда, где произошла ошибка, и восстановить его значение, могут не все помехозащитные коды. Для этих целей служат корректирующие коды, позволяющие не только обнаружить ошибку, но и исправить ее.

Особенность построения кодовых комбинаций корректирующего кода заключается в том, что в состав разрешенных комбинаций должны входить лишь такие, которые имеют по отношению друг к другу минимальное кодовое расстояние:

\[
d_{\text{min}} \geq (t + q + 1),
\]

где \( q \) – кратность исправляемых ошибок.

Таким образом, чтобы обнаружить, а затем исправить единичную ошибку, необходимо иметь \( d_{\text{min}} = 3 \).

Например, имеем две разрешенные кодовые комбинации: 1001 и 0111. Произведем их сложение по модулю 2: 1001 \( \oplus \) 0111 = 1110. Откуда следует, что сумма имеет кодовое расстояние \( d_{\text{min}} = 3 \).

Допустим, при передаче второй комбинации произошла ошибка в ее младшем разряде, т. е. принята комбинация 0110. Осуществляя поразрядное сложение по модулю 2 разрешенных комбинаций с принятой комбина-
цией, получим $0111 \oplus 0110 = 0001$, следовательно, $d = 1$; $1001 \oplus 0110 = 1111$, следовательно, $d = 4$.

Находим сумму кодовых комбинаций, имеющих минимальное кодовое расстояние: $0111 \oplus 0110 = 0001$.

Наличие только одной единицы в полученной сумме по модулю 2 указывает на то, что принятая кодовая комбинация искажена (реализуется функция обнаружения ошибки), а местонахождение ее в младшем разряде указывает, что в данном разряде произошла ошибка и его значение необходимо откорректировать путем замены значения младшего разряда принятой комбинации на противоположное. После корректировки сложение по модулю 2 дает число, состоящее из одних нулевых разрядов: $0111 \oplus 0110 = 0000$. Число 0000 говорит о верном исправлении искажения.

Инверсный код (код Бауэра). Относится к числу кодов с обнаружением ошибок. Представляет собой разновидность кодов с повторением, в котором в качестве контрольных разрядов повторяются разряды исходного кода. При этом общее число разрядов полученной кодовой комбинации увеличивается вдвое.

У инверсного кода при нечетной сумме единиц в исходной комбинации проверочная часть, представляющая собой контрольные разряды, инвертируется. Например, исходная 3-разрядная кодовая комбинация 010 при использовании инверсного кода имеет вид 010 101, так как исходная кодовая комбинация содержит нечетное число единиц, и следовательно, проверочная часть кода (три младших контрольных разряда) инвертируется.

Код Бауэра имеет следующие характеристики:

- относительная избыточность кода $R$, равная отношению числа г контрольных разрядов к общей длине кода, равной $(k + r)$, где $k$ – число информационных разрядов исходного кода:

$$R = \frac{r}{k + r} = \frac{k}{2k} = 0,5;$$

- минимальное кодовое расстояние $d_{min} = 2$ при $k = 2$;

$$d_{min} = 3 \text{ при } k = 3;$$

$$d_{min} = 4 \text{ при } k = 4;$$

- кратность обнаруживаемых ошибок $t = d_{min} - 1$, соответственно при $k = 2 \Rightarrow t = 1$, при $k = 3 \Rightarrow m = 2$, при $k = 4 \Rightarrow m = 3$.

При этом может обнаруживаться и ошибок большей кратности. Так, например, при $k = 2$ может быть обнаружено до 67% двойных ошибок, а при $k = 3$ – до 80% тройных и четвертных ошибок и все пяти- и шестикратные ошибки;
– максимальная кратность обнаруживаемых ошибок $t$ (при $q = d_{\min} = t - 1$) соответственно равна $t = 1$, если $d_{\min} = 3$, $t = 2$, если $d_{\min} = 4$.

Принцип построения инверсного кода. Допустим, что исходный код содержит $n$ разрядов. Пронумеруем разряды инверсного кода следующим образом: $k_{n-1}$, $k_{n-2}$, ..., $k_0$, $r_{n-1}$, $r_{n-2}$, ..., $r_0$. Здесь символом $k$ обозначены информационные разряды, а символом $r$ – контрольные разряды исходного кода. Значение любого $j$-го разряда контрольной части равно сумме по модулю 2 всех разрядов информационной части, за исключением $j$-го ее разряда:

$$ r_j = k_{n-j} \oplus k_{n-2} \oplus ... \oplus k_{j+1} \oplus k_{j+1} \oplus ... \oplus k_0. $$

В соответствии с указанной формулой для 8-разрядного инверсного кода запишем выражения для определения значений разрядов его контрольной части:

$$ r_0 = k_3 \oplus k_2 \oplus k_1; $$
$$ r_1 = k_3 \oplus k_2 \oplus k_0; $$
$$ r_2 = k_3 \oplus k_1 \oplus k_0; $$
$$ r_3 = k_2 \oplus k_1 \oplus k_0. $$

(5.3)

Полученные выражения являются функциями алгебры логики (ФАЛ), записанные в аналитической форме. Они являются основой для синтеза схемы кодирующего устройства на соответствующих логических элементах.

Для синтеза схемы декодирующего устройства необходимо получить ФАЛ для проверочных соотношений (синдромов). С помощью проверочных соотношений осуществляется обнаружение принятой с искажением кодовой комбинации и при возможности ее исправление.

Если левые и правые части каждого из четырех выражений (5.3), определенных для принятой кодовой комбинации, равны, то можно утверждать, что принятая кодовая комбинация не имеет искажений. В результате исходная кодовая комбинация получается простым отбрасыванием контрольной части кода.

Отсюда вытекает правило составления ФАЛ для разрядов синдрома в виде суммы по модулю 2 левой и правой частей соотношений (5.3):

$$ i_0 = r_0 \oplus k_3 \oplus k_2 \oplus k_1; $$
$$ i_1 = r_1 \oplus k_3 \oplus k_2 \oplus k_0; $$
$$ i_2 = r_2 \oplus k_3 \oplus k_1 \oplus k_0; $$
$$ i_3 = r_3 \oplus k_2 \oplus k_1 \oplus k_0. $$

(5.4)

Для принятой без искажения кодовой комбинации значения всех четырех разрядов синдрома (5.4) должны быть равны 0, т. е. $i_0 = i_1 = i_2 = i_3 = 0$, что вытекает из правила составления соотношений (5.3). Если хотя бы один из разрядов синдрома не равен 0, то кодовая комбинация принята с ошибкой.

Наличие только одного ненулевого разряда синдрома указывает на то, что ошибка произошла в соответствующем контрольном разряде кодо-
вой комбинации. Если ошибка произошла в $k_j$ разряде информационной части кодовой комбинации, то все разряды синдрома, содержащие данный информационный разряд, кроме $i_j$ -го будут равны единице.

Проверочные соотношения (5.4) являются функциями алгебры логики (ФАЛ) и служат основой для синтеза декодирующего устройства.

**Модифицированный код Бауэра.** Он является одной из разновидностей кода с повторением и отличается от последнего тем, что при нечетном количестве единиц в исходном коде инвертируются первые $(n − 1)$ старших разрядов контрольной части кода с повторением, а при четном – только последний младший разряд контрольной части кода с повторением.

Так, например, при использовании восьмиразрядного модифицированного кода Бауэра кодовая комбинация кода с повторением 1011 1011 преобразуется в кодовую комбинацию 1011 0101, а кодовая комбинация 1001 1001 – в кодовую комбинацию 1001 1000.

Особенность этого кода заключается в том, что он не имеет комбинаций с одними нулями или единицами, что дает возможность проверять канал связи. Кроме того, данный код является самосинхронизирующимся кодом, при котором любой циклический сдвиг его комбинации не приводит к ложному появлению разрешенных комбинаций.

Характеристики модифицированного кода Бауэра:
- избыточность кода $R = 0.5$;
- минимальное кодовое расстояние $d_{\min} = 4$ при $k \geq 4$;
- кратность обнаруживаемых ошибок без исправления $t = d_{\min} − 1$;
- кратность обнаруживаемых и исправляемых ошибок при $d_{\min} = 3$: $t = q = 1$;
- кратность обнаруживаемых и исправляемых ошибок при $d_{\min} = 4$: $t = 2$, $q = 1$.

Аналитические выражения для определения значений контрольных разрядов кодирующим устройством имеют вид, аналогичный для винерного кода за исключением младшего разряда.

Для 8-разрядного модифицированного кода Бауэра ($k = r = 4$) они принимают следующий вид:

$$
\begin{align*}
   r_0 &= k_3 \oplus k_2 \oplus k_1; \\
   r_1 &= k_3 \oplus k_2 \oplus k_0; \\
   r_2 &= k_3 \oplus k_1 \oplus k_0; \\
   r_3 &= k_2 \oplus k_1 \oplus k_0.
\end{align*}
$$

(5.5)

Соответственно, аналитические выражения для определения значений синдрома декодирующим устройством имеют следующий вид:

$$
\begin{align*}
   i_0 &= r_0 \oplus k_3 \oplus k_2 \oplus k_1; \\
   i_1 &= r_1 \oplus k_3 \oplus k_2 \oplus k_0; \\
   i_2 &= r_2 \oplus k_3 \oplus k_1 \oplus k_0; \\
   i_3 &= r_3 \oplus k_2 \oplus k_1 \oplus k_0.
\end{align*}
$$

(5.6)
В случае правильного приема кодовой комбинации разряды синдрома согласно выражениям (5.5) и (5.6) должны иметь следующие значения: 
\[ i_0 = i_1 = i_2 = i_3 = 0. \]
Наличие единичных значений синдрома свидетельствуют о наличии ошибок:
- единичное значение только в одном из разрядов – присутствует ошибка в соответствующем контрольном разряде, который присутствует в уравнении разряда с единичным значением;
- три единичных значения – ошибка в соответствующем информационном разряде, значение которого не присутствует в разряде синдрома с нулевым значением;
- два или четыре единичных значений в синдроме – ошибка в двух и более разрядах.

Модифицированный код Бауэра нашел широкое применение в устройствах железнодорожной автоматики и телемеханики. Например, при передаче информации по каналам АЛС-ЕН в устройствах КЛУБ (комплексное локомотивное устройство безопасности), а также в унифицированной микропроцессорной системе автоматической блокировки АБ-УЕ.

**Код Хэмминга.** Он на практике имеет наибольшее распространение среди корректирующих кодов. Код Хэмминга позволяет исправлять все одиночные ошибки (при \( d_{\text{min}} = 3 \)), а также исправлять все одиночные ошибки и обнаруживать все двойные ошибки (при \( d_{\text{min}} = 4 \)), но не исправлять их. В качестве исходного кода берут простой двоичный код на все сочетания с числом информационных символов \( k \). К нему добавляют \( r \) контрольных символов. Общая длина кодовой комбинации будет равна \( n = k + r \).

Рассмотрим последовательность кодирования и декодирования сообщения с использованием кода Хэмминга.

При передаче кодовой комбинации по каналу связи возможно искажение любого из \( n \) символов. Следовательно, для исправления одиночных ошибок декодирующее устройство с помощью \( r \) контрольных разрядов должно распознавать \( n + 1 \) событие, включая отсутствие искаженных символов. Это может быть обеспечено лишь при выполнении следующего неравенства:

\[
2^r \geq n + 1 = k + r + 1.
\]

По формуле (5.7) можно определить длину кода при заданном числе информационных или контрольных разрядов. Допустим, что число информационных разрядов исходного кода равно 4. Условие (5.7) выполняется при \( r \geq 3 \), так как \( 2^r - r = k + 1 = 2^3 - 3 = 5 \).

Особенность построения кода Хэмминга заключается в том, что комбинация значений разрядов синдрома представляет собой двоичный код десятичного числа, указывающего номер разряда кодовой комбинации, в котором произошла ошибка. Для этого число разрядов синдрома должно быть равно числу контрольных разрядов, а сами контрольные разряды
должны размещаться в кодовой комбинации на местах, кратных степени 2, т. е. на позициях 1, 2, 4 и т. д. Информационные разряды при этом располагаются на оставшихся позициях. Например, при 7-разрядном коде Хэмминга \((k = 4, r = 3)\) кодовая комбинация в общем виде будет выглядеть следующим образом:

\[ r_1 r_2 k_4 r_3 k_2 k_1, \]

где \(k_4\) – старший (четвертый) разряд исходной кодовой комбинации двоичного кода, подлежащего кодированию;

\(k_1\) – младший (первый) разряд.

Значения контрольных разрядов в коде Хэмминга определяются кодирующими устройствами по следующим уравнениям:

\[ r_1 = k_4 \oplus k_3 \oplus k_1; \]
\[ r_2 = k_4 \oplus k_2 \oplus k_1; \]
\[ r_3 = k_3 \oplus k_2 \oplus k_1. \] (5.8)

Значения разрядов синдрома кодовой комбинации для ее декодирования определяются по формулам:

\[ i_1 = r_1 \oplus k_4 \oplus k_3 \oplus k_1; \]
\[ i_2 = r_2 \oplus k_4 \oplus k_2 \oplus k_1; \]
\[ i_3 = r_3 \oplus k_3 \oplus k_2 \oplus k_1. \] (5.9)

Если комбинация значений разрядов синдрома принятой кодовой комбинации равна нулю \((i_1 = i_2 = i_3 = 0)\), значит, она принята без ошибок. В противном случае десятичный эквивалент двоичного кода синдромов \(i_1i_2i_3\) равен номеру разряда кода Хэмминга, в котором произошла ошибка. Если ошибка произойдет в контрольном разряде, то двоичный код синдрома примет одно из следующих значений: 100, 010 или 001, что соответствует десятичным числам 1, 2 и 4, т. е. номерам контрольных разрядов.

Модифицированный код Хэмминга с кодовым расстоянием \(d_{\text{min}} = 4\) получается добавлением к коду Хэмминга с кодовым расстоянием \(d_{\text{min}} = 3\) четвертого контрольного разряда \(r_4\), определяемого путем суммирования по модулю 2 всех разрядов исходного кода Хэмминга:

\[ r_4 = r_1 \oplus r_2 \oplus k_4 \oplus r_3 \oplus k_3 \oplus k_2 \oplus k_1. \] (5.10)

Соответственно, значение четвертого разряда \(i_4\) синдрома будет равно

\[ i_4 = r_4 \oplus k_4 \oplus k_3 \oplus k_2 \oplus r_1 \oplus r_2 \oplus k_1 \oplus r_3. \]

Код Хэмминга \((n = 8, r = 4)\) обнаруживает все 1-, 2-, 5- и 6-кратные ошибки, 80 % 3- и 4-кратных ошибок и наиболее часто используется в телемеханических системах передачи информации.

5.6. Методика выполнения курсовой работы

5.6.1. Построение кода для передаваемого сообщения

86
Пусть в соответствии с заданием на курсовую работу порядковый номер сообщения, которое необходимо передать по каналу связи, равен 10. В результате преобразования десятичного числа 10 получаем четырехразрядный двоичный код 1010, который подлежит кодированию заданным корректирующим кодом.

Если сумма двух последних цифр шифра зачетной книжки студента – нечетное число 15, разлагаемое на два сомножителя 3 и 5. В этом случае в соответствии с заданием необходимо использовать инверсный код. При кодировании инверсным кодом к исходному двоичному 4-разрядному коду добавляем 4-разрядное двоичное число, состоящее из контрольных разрядов. В соответствии с правилом построения инверсного кода контрольные разряды повторяют исходную кодовую комбинацию, так как в ней содержится четное число единиц: 1010. Таким образом, закодированное сообщение принимает вид 8-разрядного двоичного числа: \( k_3 k_2 k_1 k_0 r_3 r_2 r_1 r_0 = 10101010 \), которое необходимо передать по каналу связи.

Если сумма двух последних цифр шифра студента равна 13, которая не разлагается на сомножители, то требуется использовать модифицированный код Бауэра. В соответствии с правилом его построения следует в полученной ранее кодовой комбинации инверсного кода значение ее младшего разряда \( r_0 \) изменить на противоположное, так как исходный код содержит четное число единиц. В результате искомая кодовая комбинация примет следующий вид: \( k_3 k_2 k_1 k_0 r_3 r_2 r_1 r_0 = 10101011 \).

Если сумма двух последних цифр шифра зачетной книжки студента, например, четное число 12 и обе цифры – нечетные числа 7 и 5, требуется использовать 7-разрядный код Хэмминга. При использовании указанного кода необходимо определить значения контрольных разрядов в соответствии с аналитическими выражениями (5.8):

\[
\begin{align*}
 r_1 &= k_4 \oplus k_3 \oplus k_1 = 1 \oplus 0 \oplus 0 = 1; \\
 r_2 &= k_4 \oplus k_2 \oplus k_1 = 1 \oplus 1 \oplus 0 = 0; \\
 r_3 &= k_3 \oplus k_2 \oplus k_1 = 0 \oplus 1 \oplus 0 = 1.
\end{align*}
\]

(5.11)

Руководствуясь правилами построения кода Хэмминга, составим искомую кодовую комбинацию: \( r_1 r_2 k_4 r_3 k_3 k_2 k_1 = 1011010 \).

Если обе цифры шифра зачетной книжки студента четные числа, например, 8 и 4, то для кодирования требуется использовать 8-разрядный модифицированный код Хэмминга. Для получения кода необходимо значения младших контрольных разрядов \( r_1 r_2 r_3 \) определить в соответствии с аналитическими выражениями (5.8). Четвертый контрольный разряд определяют по формуле (5.10):

\[
\begin{align*}
 r_4 &= r_1 \oplus r_2 \oplus k_4 \oplus r_3 \oplus k_3 \oplus k_2 \oplus k_1 = \\
 &1 \oplus 0 \oplus 1 \oplus 0 \oplus 1 \oplus 0 = 0. 
\end{align*}
\]

Добавив его к ранее полученному 7-рядному коду Хэмминга, получим искомую 8-разрядную кодовую комбинацию: \( r_1 r_2 k_4 r_3 k_3 k_2 k_1 r_4 = 10110100 \).
5.6.2. Расчет корректирующих способностей заданного кода

Расчет производится для определения кратности $t$ обнаруживаемых и $q$ исправляемых ошибок, которые могут возникнуть в процессе передачи кодовой комбинации по каналу связи. Расчет производится для каждого вида ошибок раздельно:

$$q = d_{\text{min}} - t - 1;$$
$$t = d_{\text{min}} - q - 1, \text{ при } q \leq t;$$
$$t = d_{\text{min}} - 1, \text{ при } q = 0.$$

5.6.3. Структурный синтез кодирующего устройства (кодера)

Как видно из структуры выражений (5.3)–(5.11) для построения корректирующих кодов используется функция сложения по модулю 2, которая для двух переменных имеет вид

$$y = x_1 \& \overline{x}_2 + \overline{x}_1 \& x_2.$$  \hspace{1cm} (5.12)

Структурная схема, реализующая логическую функцию сложения по модулю 2, представлена на рис. 5.1, а, ее условное обозначение – на рис. 5.1, б. На рис. 5.1, в показана схема реализации многовходового логического блока, реализующего функцию сложения по модулю 2. В дальнейшем для упрощения изображения многовходового блока при использовании трех входов ($x_1, x_2, x_3$) и выхода $y_1 = x_1 \oplus x_2 \oplus x_3$ будем его обозначать «R», при использовании всех четырех входов и выхода $y_2$ – будем обозначать «I».

![Рис. 5.1. Схемы функции сложения по модулю 2](image)

а – структурная схема функции сложения по модулю 2; б – условное обозначение;

в – многовходовый блок сложения по модулю 2

Для синтеза схемы кодера инверсного кода используются выражения (5.1) для вычисления контрольных разрядов. Так как в каждое из выражений входит по три переменных и две операции, для построения схемы ко-
дера используем логический блок R, который реализует функцию у, сложения по модулю 2 для трех переменных. Его входы следует подключить к соответствующим разрядам исходного двоичного кода, а на выходе будет формироваться значение соответствующего контрольного разряда.

Один блок R позволяет вычислить значение только одного контрольного разряда. Поэтому для построения кодера необходимо использовать четыре блока R по числу контрольных разрядов. В качестве примера на рис. 5.2 приведена схема кодера для инверсного кода.

![Diagram](image)

Рис. 5.2. Структурная схема кодера для инверсного кода

На вход кодера подается исходный код 1010, а на выходе имеем кодовую комбинацию в инверсном коде – 10101010. Для обеспечения одновременности вывода разрядов инверсного кода с выхода кодера применены логические элементы «И», на второй вход которых подается синхронизирующий сигнал логической единицы. В результате элементы «И» работают в режиме электронного ключа.
Пример структурной схемы кодера для модифицированного кода Бауэра представлен на рис. 5.3. Структурная схема строится на основе выражений (5.3). Она отличается от предыдущей схемы логикой вычисления контрольного разряда \( r_0 \). Для этого сигнал с выхода блока \( R \) для формирования значения контрольного разряда \( r_0 \) предварительно инвертируется до поступления на логический элемент «\( I \)».

![Diagram](image)

Рис. 5.3. Структурная схема кодера для модифицированного кода Бауэра

Структурная схема кодера для семиразрядного кода Хэмминга (рис. 5.4) строится на основе выражений (5.6). Для построения структурной схемы кодера для восьмиразрядного кода Хэмминга (рис. 5.5) используются выражения (5.6) для определения первых трех контрольных разрядов и выражения (5.8) для определения дополнительного четвертого контрольного разряда.
Рис. 5.4. Структурная схема кодера для 7-разрядного кода Хэмминга

Рис. 5.5. Структурная схема кодера для 8-разрядного кода Хэмминга
5.6.4. Структурный синтез декодирующего устройства (декодера)

Для построения структурной схемы декодера применяют логические выражения синдромов. В качестве примера рассмотрим порядок синтеза структурной схемы декодера для семиразрядного кода Хэмминга, используя для этой цели выражения (5.9).

Синтезируемый декодер должен иметь три выхода по числу разрядов синдрома и семь входов по числу разрядов принятой кодовой комбинации. На рис. 5.6 представлена структурная схема искомого декодера для 7-разрядного кода Хэмминга.

Рис. 5.6. Структурная схема декодера для семиразрядного кода Хэмминга

Для проверки правильности работы схемы декодера следует задаться последовательно искажением одного из информационных разрядов и одного из контрольных разрядов и проверить возможность обнаружения и исправления ошибок на основе полученных значений синдромов на выходе декодера.

Рассмотрим для примера случай, когда в результате воздействия помех искажился шестой информационный разряд передаваемой кодовой комбинации $u_6 = k_1$ (нумерация разрядов кода ведется слева направо, начиная с единицы), в результате чего на вход декодера вместо закодированного сообщения 1011010 поступило ложное сообщение 1011000. В соответствии с выражениями (5.9) разряды синдрома на выходе декодера примут следующие значения:
\[i_1 = 1 \oplus 1 \oplus 0 \oplus 0 = 0;\]
\[i_2 = 0 \oplus 1 \oplus 0 \oplus 0 = 1;\]
\[i_3 = 1 \oplus 0 \oplus 0 \oplus 0 = 1.\]

Таким образом, на выходе декодера мы получили кодовую комбинацию синдрома в двоичном коде: \(i_3 i_2 i_1 = 110\), что соответствует десятичному числу: \(2^2 \cdot 1 + 2^1 \cdot 1 + 2^0 \cdot 0 = 4 + 2 + 0 = 6\). Число 6 указывает номер исказжного разряда (при вычислении десятичного числа необходимо иметь в виду, что индекс старшего разряда двоичного кода синдрома имеет больший номер). В нашем случае, это действительно шестой разряд и декoder правило его определил.

Добавив к декодеру логическую схему преобразования двоичного числа в десятичный унитарный код можно исправить исказжный разряд кодовой комбинации в случае, если имеется хотя бы один ненуевой разряд в синдроме. Сигнал в преобразователе унитарного кода появляется только на одном из десяти выходов схемы, каждый из которых связан с определенным значением одноразрядного десятичного числа.

На рис. 5.6 значения разрядов принятой кодовой комбинации и синдрома представлены применительно к рассмотренному выше случаю исказжения сигнала.

Рассмотрим теперь случай исказжения контрольного разряда, например, четвертого символа \(u_4 = r_3\) той же кодовой комбинации. В этом случае на вход декодера поступит ложная комбинация в виде двоичного числа 1010010. В соответствии с логическими выражениями (5.9) разряды синдрома на выходе декодера примут следующие значения:

\[i_1 = 1 \oplus 1 \oplus 0 \oplus 0 = 0;\]
\[i_2 = 0 \oplus 1 \oplus 1 \oplus 0 = 0;\]
\[i_3 = 0 \oplus 0 \oplus 1 \oplus 0 = 1.\]

В результате на выходе декодера будет двоичное число \(i_3 i_2 i_1 = 100\), которое соответствует десятичному числу 4 (4 + 0 + 0). Оно показывает, что в процессе передачи кодовой комбинации по каналу связи произошло исказжение 4-го символа \(u_4\). Это действительно имело место в процессе передачи кодовой комбинации по каналу связи.

Недостаток рассмотренного 7-разрядного кода Хэмминга заключается в том, что по значению синдрома нельзя определить, то ли произошла одна ошибка и ее следует исправлять, то ли имеет место несколько ошибок в кодовой комбинации и исправить ее невозможно. Это связано с тем, что значения синдромов представляют собой простой трехразрядный код на все сочетания. В результате при нескольких исказжениях получается исказженная кодовая комбинация значений синдрома, которая не отражает истинный номер исказженного разряда. Поэтому, если стоит задача не только обнаружения ошибок, но и их исправления, то рассмотренный код целесообразно использовать в каналах связи с преимущественно одиночными ошибками.
Код Хэмминга 8-разрядный имеет избыточный разряд синдрома, позволяющий закодировать максимальное по значению десятичное число, равное 15 и превышающее почти в два раза длину кодовой комбинации. Позволяет отличать одиночную ошибку от нескольких и поэтому является более эффективным.

При наличии всех нечетных искажений 8-разрядного кода Хэмминга (одиночная, тройная и т. д. ошибка) разряд \( i_4 = 1 \). При всех четных (двойная, четверная и т. д. ошибка) разряд \( i_4 = 0 \).

Поэтому при наличии в синдроме разряд \( i_4 = 1 \), по значениям разрядов \( i_1 - i_3 \) определяется место одиночного искажения способом, который аналогичен 7-разрядному коду Хэмминга. В последующем осуществляется его исправление. При значениях разряда синдрома \( i_4 = 0 \) и значения хотя бы одного из разрядов \( i_1 - i_3 \), равного нулю, принятая кодовая комбинация отбрасывается как имеющая более одной ошибки.

5.6.5. Исследование кодера и корректирующих способностей декодера

Исследование кодера и декодера следует проводить расчетным путем с использованием проверочных соотношений (синдромов).

Результаты исследований представить в виде табл. 5.3, содержащей в качестве примера результаты проведенного нами аналитического исследования 7-разрядного кода Хэмминга.

Таблица 5.3

<table>
<thead>
<tr>
<th>Наименование кода</th>
<th>Модифицированный код Хэмминга</th>
</tr>
</thead>
<tbody>
<tr>
<td>Номер сообщения: 10</td>
<td>Исходный двоичный код: 1010</td>
</tr>
</tbody>
</table>

Передаваемая кодовая комбинация: 10110100

<table>
<thead>
<tr>
<th>Принятая кодовая комбинация</th>
<th>Значение синдрома</th>
<th>Заключение</th>
</tr>
</thead>
<tbody>
<tr>
<td>( i_4 )</td>
<td>( i_3 )</td>
<td>( i_2 )</td>
</tr>
<tr>
<td>10110100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10110000</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>10100100</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>10100000</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Код позволяет обнаруживать двойные и исправлять одиночные ошибки.

5.7. Расчет вероятности ошибок при передаче сообщений

5.7.1. Передача информации по каналам с независимыми ошибками

При проектировании систем передачи информации оценка достоверности обмена информацией определяется допустимой вероятностью иска-
жения сообщения \( P_{\text{ош}} \). При этом указывается вероятность искажения двоичного символа передаваемого сообщения \( p \).

Если в случае действия независимых ошибок в канале связи \( p \), вероятность искажения двоичного символа, то \((1 - p)\) – вероятность отсутствия искажения. Тогда для двоичной последовательности, содержащей \( n \) символов:

а) вероятность правильно принятой последовательности:
\[
P_{\text{пр}} = (1 - p)^n;\]

б) вероятность ошибки в принятой последовательности:
\[
P_{\text{ош}} = 1 - (1 - p)^n;\]

Эту формулу можно записать в следующем виде:
\[
P_{\text{ош}} = \sum_{t=0}^{n} C_n^t p^t (1 - p)^{n-t},
\]
где
\[
C_n^t = \frac{n!}{t!(n-t)!}.
\]

Использование избыточных кодов позволяет исправлять или обнаруживать в зависимости от кодового расстояния ту или иную кратность ошибок. Поэтому для оценки эффективности кодов необходимо знать вероятность появления в кодовой комбинации ошибок любой кратности.

При независимых ошибках вероятность \( t \)-кратных ошибок
\[
P_{\text{ош}} = \sum_{t=1}^{q} \sum_{t=1}^{n} C_n^t p^t (1 - p)^{n-t},
\]
где \( t = 1, 2, 3 \) и т. д. – кратность ошибок.

Для кодов, исправляющих ошибки кратности до \( q \), вероятность исправления
\[
P_{\text{ош}} = \sum_{t=1}^{q} P_{\text{ош}}^t = \sum_{t=1}^{q} C_n^t p^t (1 - p)^{n-t}.
\]

Прием кодовых слов, исправляющих ошибки, в общем случае может сопровождаться следующими ситуациями:

а) кодовое слово принято без ошибок (правильно) (вероятность этого события \( P_{\text{пр}} \));

б) кодовое слово принято с ошибкой (вероятность \( P_{\text{ош}} \)). Очевидно, что
\[
P_{\text{ош}} + P_{\text{пр}} = 1;
\]

в) кодовое слово принято с ошибкой, которая исправляется с вероятностью \( P_{\text{исп}} \);

г) кодовое слово принято с ошибкой, которая не исправляется данным кодом. Вероятность этого события \( P_{\text{н.н.}} \). Отсюда
\[
P_{\text{ош}} = P_{\text{н.н.}} + P_{\text{исп}}.
\]

Из этого следует, что вероятность появления неисправляемых ошибок
\[
P_{\text{н.н.}} = P_{\text{ош}} - P_{\text{исп}}.
\]

Используя данные выражения, получаем
\[
P_{\text{н.н.}} = 1 - (1 - p)^n - \sum_{t=1}^{q} C_n^t p^t (1 - p)^{n-t}.
\]

Эта формула позволяет вычислить вероятность неисправляемой ошибки при передаче информации с помощью кода, исправляющего \( q \)-кратные ошибки.
Для кодов, обнаруживающих ошибки, характерны следующие ситуации:

а) кодовое слово принято без ошибок с вероятностью \( P_{ne} \);

б) кодовое слово принято с ошибкой, которая обнаруживается. Вероятность такого события \( P_{o.o.} \);

в) кодовое слово принято с ошибкой, которая с вероятностью \( P_{n.o.} \) не обнаруживается. При этом

\[
P_{oш} = P_{n.o.} + P_{исп}.
\]

Поскольку искаженные комбинации, которые обнаруживаются приемным устройством, потребителю не выдаются, то вероятность получения ошибочных комбинаций потребителем оценивается только как \( P_{n.o.} \). При использовании кода, обнаруженного ошибки, вероятность такого события

\[
P_{n.o.} = \frac{1}{2^t} \sum_{k=d}^{n} C_n^t (1 - p_3)^{n-t}.
\]

Для упрощения расчетов в табл. 5.4 приведены значения функции \((1 - p_3)^t\) для значений \( p_3 \) и \( t \), в табл. 5.5 – значения \( C_n^t \).

### Значения функции \((1 - p_3)^t\)

<table>
<thead>
<tr>
<th>t</th>
<th>(10^{-2})</th>
<th>(10^{-3})</th>
<th>(10^{-4})</th>
<th>(10^{-5})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.99000000</td>
<td>0.99900000</td>
<td>0.99990000</td>
<td>0.99999000</td>
</tr>
<tr>
<td>2</td>
<td>0.98010000</td>
<td>0.99800100</td>
<td>0.99980010</td>
<td>0.99998000</td>
</tr>
<tr>
<td>3</td>
<td>0.97029900</td>
<td>0.99700300</td>
<td>0.99970003</td>
<td>0.99997000</td>
</tr>
<tr>
<td>4</td>
<td>0.96059601</td>
<td>0.99600600</td>
<td>0.99960006</td>
<td>0.99996000</td>
</tr>
<tr>
<td>5</td>
<td>0.95099005</td>
<td>0.99500999</td>
<td>0.99950010</td>
<td>0.99995000</td>
</tr>
<tr>
<td>6</td>
<td>0.94148015</td>
<td>0.99401498</td>
<td>0.99940015</td>
<td>0.99994000</td>
</tr>
<tr>
<td>7</td>
<td>0.93206535</td>
<td>0.99302097</td>
<td>0.99930021</td>
<td>0.99993000</td>
</tr>
<tr>
<td>8</td>
<td>0.92274470</td>
<td>0.99202795</td>
<td>0.99920028</td>
<td>0.99992000</td>
</tr>
<tr>
<td>9</td>
<td>0.91351725</td>
<td>0.99103592</td>
<td>0.99910036</td>
<td>0.99991000</td>
</tr>
<tr>
<td>10</td>
<td>0.90438208</td>
<td>0.99004488</td>
<td>0.99900045</td>
<td>0.99990001</td>
</tr>
</tbody>
</table>

### Значения \( C_n^t \)

| t | \(n\) | | | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| 2 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| 3 | 1 | 3 | 6 | 10 | 15 | 21 | 28 | 36 | 45 | 55 |
| 4 | 1 | 4 | 10 | 20 | 35 | 56 | 84 | 120 | 170 | 230 |
| 5 | 1 | 5 | 10 | 20 | 35 | 56 | 84 | 120 | 170 | 230 |
| 6 | 1 | 6 | 12 | 20 | 35 | 56 | 84 | 120 | 170 | 230 |
| 7 | 1 | 7 | 14 | 20 | 35 | 56 | 84 | 120 | 170 | 230 |
| 8 | 1 | 8 | 16 | 24 | 35 | 56 | 84 | 120 | 170 | 230 |
| 9 | 1 | 9 | 18 | 27 | 40 | 56 | 84 | 120 | 170 | 230 |
| 10 | 1 | 10 | 20 | 30 | 45 | 60 | 84 | 120 | 170 | 230 |
5.7.2. Передача информации по каналам связи с пакетным распределением ошибок

На практике каналы связи обычно характеризуются зависимостью вероятности искажения последующего передаваемого символа от искажения предыдущего. При этом расчеты, приведенные выше, дают значения вероятности ошибки, иногда значительно отличающиеся от реальных, что объясняется влиянием на прохождение сигналов изменений метеоусловий, наличием промышленных помех, взаимных помех и т. д. Все это приводит к пакетному характеру ошибок в каналах передачи информации. При таких условиях нахождение вероятности ошибок довольно затруднительно и связано с исследованием реальных характеристик каналов связи. В работе [3] сделана попытка описать реальные каналы связи с помощью всего лишь двух параметров — вероятности искажения двоичного символа $p_3$ и показателя группирования ошибок $\alpha$. Экспериментальные значения этих параметров приведены в табл. 5.6.

Таблица 5.6

<table>
<thead>
<tr>
<th>№ п/п</th>
<th>Канал</th>
<th>Модуляция</th>
<th>Скорость передачи, бит/c</th>
<th>$p_3$</th>
<th>$\alpha$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Кабельный телефонный</td>
<td>Фазоразностная</td>
<td>1200</td>
<td>$3,08 \cdot 10^{-4}$</td>
<td>0,615</td>
</tr>
<tr>
<td>2</td>
<td>Радиорелейный телефонный</td>
<td>Частотная</td>
<td>1200</td>
<td>$7,04 \cdot 10^{-4}$</td>
<td>0,545</td>
</tr>
<tr>
<td>3</td>
<td>Радиотелефонный КВ-канал</td>
<td>—</td>
<td>75</td>
<td>$1,37 \cdot 10^{-2}$</td>
<td>0,449</td>
</tr>
<tr>
<td>4</td>
<td>Тропосферный телефонный</td>
<td>Частотная</td>
<td>1200</td>
<td>$6,34 \cdot 10^{-4}$</td>
<td>0,439</td>
</tr>
<tr>
<td>5</td>
<td>Радиорелейный</td>
<td>Частотная</td>
<td>1200</td>
<td>$1,3 \cdot 10^{-3}$</td>
<td>0,33</td>
</tr>
</tbody>
</table>

Приближенные формулы для определения $P_{\text{n.o.}}$ ($P_{\text{n.i.}}$) имеют следующий вид:

а) для кодов, исправляющих ошибки:

$$P_{\text{n.i.}} = \left( \frac{n}{q+1} \right)^{1-\alpha} p_3,$$

где $q$ — кратность исправляемой ошибки.

б) для кодов, обнаруживающих ошибки:

$$P_{\text{n.o.}} = \frac{p_3}{2^r} \left( \frac{n}{d} \right)^{1-\alpha},$$

где $d$ — минимальное кодовое расстояние;

$r$ — число проверочных символов.

в) для кодов, исправляющих и обнаруживающих:

$$P_{\text{n.o.(n.i.)}} = \frac{\sum_{i=0}^{q} c_{i}^{n}}{2^r} \left( \frac{n}{d-q} \right)^{1-\alpha} p_3.$$

Эти формулы справедливы, если число ошибок $e$ в комбинации из $n$ символов удовлетворяет условию $e < 0,3n$.  

97
ЗАКЛЮЧЕНИЕ

Дальнейшее развитие теории и техники кодирования и декодирования кодов связано, прежде всего, с появлением новых дискретных кодов и расширением сфер их применения. Существенное влияние на процесс в этой области оказывает также и состояние элементной базы. В конспекте лекций применительно к аппаратным методам преобразования кодов рассмотрены некоторые тенденции выполнения кодеров и декодеров на специализированных ИС, микросхемных матрицах ПЗУ, сумматорах и т. д. В ближайшие годы нужно ожидать значительного расширения номенклатуры заказных БИС для преобразования кодов. Что касается преобразователей кодов с параллельным вводом информации, отличающихся повышенным быстродействием, то при их разработке и практической реализации возникают определенные трудности с увеличением разрядности кодов. Эти трудности могут быть преодолены при помощи аппарата автоматизации проектирования цифровых устройств с привлечением ЭВМ. Методика машинного синтеза схем и соответствующее математическое обеспечение в настоящее время разработаны достаточно хорошо и позволяют синтезировать схемы преобразователей кодов практически на любое количество разрядов входного и выходного кодов. Перспективными следует считать программируемые логические матрицы.

Наряду с аппаратными методами совершенствуются и программные способы преобразования кодов. Возможности программных методов существенно расширились с появлением микропроцессоров. В учебно-методическом пособии приведены достаточно четкие алгоритмы процесса преобразования кода в код, которые могут быть использованы при разработке соответствующих программ. В данном пособии отмечался ряд ограничений и недостатков, присущих программным методам. Нужно еще добавить, что в программных методах раскрываются лишь алгоритмы преобразования, в то время как аппаратурные методы позволяют проследить все аспекты схемотехнической реализации преобразователей кодов, а это представляет интерес для студентов специальности «Системы обеспечения движения поездов». В целом можно рассчитывать, что для решения подчас сложных задач теории и техники преобразования кодов в ближайшие годы потребуется обращение как к программным, так и к аппаратным методам.

Приведенные в работе схемы не являются единственным решением, а лишь одним из возможных вариантов технического осуществления преобразования кодов.
БИБЛИОГРАФИЧЕСКИЙ СПИСОК

Основная литература


Дополнительная литература


Учебное издание

Синтез и анализ комбинационных устройств
в системах обеспечения движения поездов

Учебно-методическое пособие

Редактор Н. А. Михайлова
Компьютерный набор В. А. Алексеенко, М. В. Копанев

Подписано в печать 06.04.2017.
Формат 60х84 1/16. Печать офсетная.
Усл. печ. л. 6,25. Уч.-изд. л. 6,79.
План 2017 г. Тираж 100 экз. Заказ

Типография ИрГУПС, г. Иркутск, ул. Чернышевского, 15