А. В. Дудакова, О. П. Ганеева

ПУТЬ, ЖЕЛЕЗНОДОРОЖНЫЕ СТАНЦИИ И УЗЛЫ

Учебное пособие

Иркутск 2017
Рекомендовано к изданию редакционным советом ИрГУПС

Рецензенты:
В. И. Зверев, канд. техн. наук, доцент, начальник отдела автоматизированных систем диспетчерского управления перевозками ДЦУП ИрИВЦ – структурного подразделения ГВЦ – филиала ОАО «РЖД»;
Е. В. Покацкая, канд. техн. наук, доцент кафедры «Управление эксплуатационной работой» Самарского государственного университета путей сообщения

Дудакова А. В., Ганеева О. П.

В пособии изложены вопросы устройства пути и выбора варианта построения новой железнодорожной линии, трассирования по топографическим картам, построения продольных и поперечных профилей. Приведены подробные расчеты основных устройств железнодорожной станции и определение координат стрелочной улицы.

Предназначено для студентов направления подготовки «Технология транспортных процессов», специальности «Эксплуатация железных дорог» дневной и заочной форм обучения.

© Дудакова А. В., Ганеева О. П., 2017
© Иркутский государственный университет путей сообщения, 2017
ОГЛАВЛЕНИЕ

Предисловие ... 4
Введение .. 5

Глава 1. ЖЕЛЕЗНОДОРОЖНЫЙ ПУТЬ .. 7
1. Понятие трассы, плана и продольного профиля железнодорожных линий .. 7
2. Понятие железнодорожного пути, нижнего и верхнего строений пути. Конструкция земляного полотна ... 12
3. Станционные пути и основные габаритные расстояния ... 18
4. Охрана окружающей среды, экологическая противопожарная безопасность 24
5. Выбор направления и трассирование вариантов новой железнодорожной линии (практическая часть) ... 25
5.1. Построение плана трассы .. 30
5.2. Проектирование продольного профиля земляного полотна железнодорожной линии 31
5.3. Порядок построения поперечного профиля .. 36

Глава 2. РАСЧЕТ ОСНОВНЫХ УСТРОЙСТВ ЖЕЛЕЗНОДОРОЖНОЙ СТАНЦИИ И ОПРЕДЕЛЕНИЕ КООРДИНАТ СТРЕЛОЧНОЙ УЛИЦЫ ... 38
Практическая работа № 1 «Стрелочные переводы. Взаимное расположение стрелочных переводов» ... 38
Практическая работа № 2 «Соединение двух параллельных путей» ... 41
Практическая работа № 3 «Съезды между параллельными путями» .. 44
Практическая работа № 4 «Параллельное смещение путей» .. 47
Практическая работа № 5 «Расстановка предельных столбиков и сигналов» 48
Практическая работа № 6 «Определение полезной и полной длины станционных путей» 51
Практическая работа № 7 «Стрелочные улицы» .. 52
Практическая работа № 8 «Кoordинирование элементов стрелочной горловины станции» 57

Заключение .. 61
Библиографический список .. 62

Приложение А «Пример оформления плана и продольного профиля новой однопутной железнодорожной дороги общего пользования» ... 63
Приложение Б «Пример оформления поперечного профиля выемки» ... 64
Приложение В «Схемы промежуточных станций» .. 65
Приложение Г «Основные размеры обыкновенных стрелочных переводов» 67
Приложение Д «Тригонометрические функции углов, кратных углам крестовин» 68
Приложение Е «Минимальные величины прямых вставок d при укладке стрелочных переводов на новых и переустанавливаемых станциях» ... 69
Приложение Ж «Расстояния от центров стрелочных переводов до предельных столбиков (для путей, оборудованных рельсовоццепями)» ... 70
Приложение И «Схемы стрелочных горловин» ... 71
Приложение К «Классификация железнодорожных линий по категориям» ... 74
Приложение Л «Нормы для проектирования верхнего строения путей» .. 75
Приложение М «Марки крестовин стрелочных переводов, применяемые на магистральных железнодорожных линиях» ... 76
ПРЕДИСЛОВИЕ

Учебная дисциплина «Железнодорожные станции и узлы» входит в вариативную часть профессионального цикла. Содержание разделов является логическим продолжением «Общего курса железных дорог», имеет междисциплинарные связи с дисциплиной «Управление эксплуатационной работой» и, помимо самостоятельного значения, является предшествующей для производственной преддипломной практики и государственной итоговой аттестации.

В первой части пособия изложены вопросы устройства пути и выбора варианта постройки новой железнодорожной линии, трассирования по топографическим картам, построения продольных и поперечных профилей.

Во второй части приведены подробные расчеты основных устройств железнодорожной станции и определение координат стрелочной улицы.

В результате освоения курса студент должен достигнуть следующих результатов:
– знать структуру единой транспортной системы страны и место в ней железнодорожного транспорта: инфраструктуры отрасли, основы технологии производственных процессов; особенности технических средств, устройств и сооружений железнодорожного транспорта;
– уметь выполнять основные расчеты железнодорожной линии и станционных устройств;
– владеть навыками построения железнодорожного пути, раздельных пунктов и основных элементов станций, учитывая знания о технологии работы станции и принципы их размещения в узле.

Цель дисциплины – формирование основных представлений, связанных с вопросами конструирования железнодорожного пути и раздельных пунктов, проектирования их отдельных элементов, обеспечивающих безопасную и безаварийную работу.

Задача дисциплины – изучение основ проектирования железнодорожного пути и раздельных пунктов, умение выполнять расчеты среднего уровня сложности и разрабатывать схемы размещения отдельных элементов станций.

Формы контроля самостоятельной работы студентов – выполнение практических работ, домашних заданий, подготовка и защита рефератов, тестирование.

Данное пособие может быть рекомендовано при выполнении лабораторных работ по следующим дисциплинам: «Система автоматизированного проектирования железнодорожных станций и узлов», «Система автоматизированного проектирования грузовых станций», «Система автоматизированного проектирования пассажирских станций».
ВВЕДЕНИЕ

В начале XXI в. хочется вспомнить, как начиналось строительство железных дорог и тех, кто стоял у истоков.

Первая железная дорога России протяженностью в 26 км была построена между Петербургом и Царским Селом в 1837 г. А в 1851 г. было открыто железнодорожное сообщение между Петербургом и Москвой. С этого времени началось массовое строительство железных дорог.

Новый вид транспорта вызвал упорное сопротивление. Так было не только в России, но и в других странах. Когда в Англии был решен вопрос о строительстве железной дороги, в прессе началась компания по ее срыву. Крестьян убеждали, что «новый вид транспорта вытеснит лошадей, сено и овес не найдут сбыта». Людей, занимающихся извозом, пугали полным разорением. Распространялись слухи о том, что «огненные машины» сожрут города и села, ужасный грохот паровозов лишит языка детей, вызовет у взрослого потерю слуха, а у коров — молока. Не отставали от Европы и в Америке. «Общезвестный факт, — писал один американский журналист в начале 30-х гг. XIX в., — что пассажиры от быстрого движения в поездах теряют память. Многие деловые люди, по прибытии на место, забывали о цели своей поездки, им приходилось писать домой, чтобы узнать, зачем они поехали».

Но прогресс не стоит на месте. Важную роль в обосновании необходимости строительства железных дорог в России сыграли такие прогрессивные офицеры Корпуса инженеров путей сообщения, как П. П. Мельников, Н. О. Крафт, М. С. Волков, Н. И. Липин и др. Они закладывали основы отечественной железнодорожной науки, готовили кадры для строительства железных дорог, а позднее возглавляли проектирование и создание магистралей в России. Один из будущих руководителей железнодорожного транспорта П. П. Мельников был энциклопедически образованным человеком. Он свободно владел тремя иностранными языками, обладал глубокими знаниями в области математики и механики. В 1835 г. он издал книгу «О железных дорогах», которая стала первым учебным пособием в Институте Корпуса инженеров путей сообщения, изданном на русском языке. До сих пор мы пользуемся терминами «железная дорога», «стрелка», «разъезд», введенными П. П. Мельниковым.

При проектировании и строительстве первой в России железной дороги были выполнены исследования для определения максимальной величины уклона, определен вес поезда, пропускная и провозная способность в зависимости от уклона, создана схема размещения раздельных пунктов. Эти данные послужили основанием для определения пологих уклонов первой русской железнодорожной магистрали. Была разработана методика подсчета эксплуатационных расходов для этой линии, которая используется и в настоящее время.
С появлением первых железнодорожных дорог появились первые железнодорожные станции. На линии Петербург–Москва были построены 34 станции. Первые остановочные пункты имели небольшое число путей, их схемы были несовершенны. Возможности для дальнейшего развития станций не было, так как возводились фундаментальные здания с одной и другой стороны путей. Полезная длина приемо-отправочных путей составляла 220–320 м. На некоторых первых железнодорожных линиях приемо-отправочные пути делали тупиковыми, перестраивать в сквозные их начали уже в начале нового столетия.

С 70-х гг. XX в. начинается автоматизация железнодорожного транспорта. Создаются автоматизированные системы управления, в первую очередь, в работе сортировочных станций. В трудные 90-е гг. работы по развитию и реконструкции транспорта не проводились. А в настоящее время выполняются все работы по развитию и строительству путей, их инфраструктуры. В частности, Санкт-Петербургский узел удлиняется до 1 050 и 1 500 м, развивается станция Санкт-Петербург-Сортировочный-Московский, строится пассажирская станция Ладожская и новый пассажирский вокзал Ладожский. Укладываются вторые пути на участке станции Ладожская–Горы. Выполняется электрификация линии Мга–Гатчина–Веймарн–Ивангород с развитием станций. Строятся новые (Усть-Луга) и реконструируются существующие морские порты (Туапсе, Новороссийск, Автovo), современные пограничные станции (Чернышевская), выполняется переустройство пограничных станций (Светогорск, Ивангород). Начинается программа комплексного обновления сортировочных станций, включающей удлинение путей, автоматизацию работы станции (Инская, Бекасово). Вводятся новые системы проверки технического состояния вагонов, которые позволят удлинить участки прослеживания вагонов без осмотра. Для лучшего управления, контроля и оперативного вмешательства в работу железных дорог создана система ЦУП (Центр управления перевозками), работающая в реальном масштабе времени. Информация о погруженном или выгруженном вагоне, о передаче вагонов по стыкам, о движении пассажирских поездов тут же поступает в систему. На специальном табло отображается перевозочный процесс и показатели работы сети. Работает система контроля погрузки и продвижения наливных грузов.

Таким образом, основные конструктивные формы железнодорожного пути и инженерные решения, выработанные два века назад, сохранились до наших дней. Это свидетельствует о высоком профессионализме первых проектировщиков и строителей железных дорог. Думается, знания о возникновении и развитии целой отрасли транспорта достойны быть сохранинными в анналах истории, быть известными современным инженерам.
Глава 1. ЖЕЛЕЗНОДОРОЖНЫЙ ПУТЬ

1. Понятие трассы, плана и продольного профиля железнодорожных линий

Трасса — положение оси пути в пространстве. Проекция ее на горизонтальную плоскость называется планом, а проекция на вертикальную плоскость — продольным профилем линии.

Процесс прокладки линии в ходе проектирования называется трассированием линии. Идеальной трасса была бы, если бы представляла собой прямую линию в плане, а также площадку или пологий спуск в грузовом направлении поезда в профиле. Однако это не всегда возможно в силу необходимости обхода естественных препятствий (гор, озёр, рек, болот и т. д.), подхода к населённым пунктам, наличия неровностей земной поверхности и стремления удесявить строительство железнодорожных линий. Поэтому план железнодорожной линии, представленный на рис. 1.1, проектируется в виде сочетания прямолинейных и криволинейных участков.

Рис. 1.1. План железнодорожной линии

Радиусы круговых кривых и величины переходных кривых, минимальные прямые вставки зависят от категории линии и местных условий, они представлены в табл. 1.1, 1.2.

Прямые участки плана трассы характеризуются единственным параметром — их длиной. Круговая кривая характеризуется углом поворота ϕ, радиусом R (зависит от категории линии), длиной кривой K и тангенсом T — расстоянием от начала и конца кривой до вершины угла поворота. Параметры кривых (рис. 1.2) геометрически связаны, зная угол поворота и радиус кривой R, определяют значения тангенса и длину кривой

$$T = R \cdot \tan \frac{\phi}{2}; \quad K = \frac{R \cdot \phi}{180}.$$
Радиусы круговых кривых в плане

<table>
<thead>
<tr>
<th>Категория железнодорожной линии</th>
<th>Радиус кривой в плане, м</th>
<th>Рекомендуемый</th>
<th>в трудных условиях</th>
<th>в особо трудных условиях, при технико-экономическом обосновании</th>
</tr>
</thead>
<tbody>
<tr>
<td>Скоростная</td>
<td>4 000–3 000</td>
<td>2 500</td>
<td>1 200</td>
<td></td>
</tr>
<tr>
<td>Особо грузонапряженная</td>
<td>4 000–2 000</td>
<td>1 500</td>
<td>1 000</td>
<td></td>
</tr>
<tr>
<td>I категория</td>
<td>4 000–2 500</td>
<td>2 000</td>
<td>1 000</td>
<td></td>
</tr>
<tr>
<td>II категория</td>
<td>4 000–2 000</td>
<td>1 500</td>
<td>800</td>
<td></td>
</tr>
<tr>
<td>III категория</td>
<td>4 000–1 200</td>
<td>800</td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>IV категория</td>
<td>2 000–1 000</td>
<td>600</td>
<td>350</td>
<td></td>
</tr>
</tbody>
</table>

Рис. 1.2. Элементы круговой кривой:

BY – вершина угла поворота; HK – начало круговой кривой;
KK – конец круговой кривой; \(\phi \) – угол поворота; \(R \) – радиус кривой

Станции, разъезды и обгонные пункты, а также отдельные станционные парки и вытяженные пути следует располагать на прямых участках пути. В трудных условиях допускается их размещать на кривых радиусом не менее 2 000 м на скоростных линиях; 1 500 м – на линиях I и II категорий; 1200 м – на линиях особо грузонапряженных, III и IV категорий.

В особо трудных топографических условиях при соответствующем обосновании допускается уменьшать радиус кривой до 600 м на линиях особо грузонапряженных и III и IV категорий, и до 500 м – в горных условиях. Соответственно, продольный профиль на рис. 1.3 представлен в виде прямолинейных отрезков, называемых площадками, и наклонных отрезков, именуемых уклонами, спусками или подъемами, в зависимости от движения поезда.
Продольный профиль линии (рис. 1.3) характеризуется длиной элементов и крутизной уклонов.

Рис. 1.3. Продольный профиль линии

Крутизна уклона \(i \) представляет собой отношение превышения \(h \) одной точки над другой к расстоянию \(l \) между ними \(i = \frac{h}{l} \), как видно на рис. 1.4.

Измеряется в промилле (одна тысячная часть числа, \(\% \)). Одна промилле – 1 \(\% \) – соответствует превышению 1 м высоты на протяжении 1 км линии.

Рис. 1.4. Расчетная схема для определения уклона элемента профиля

При проектировании железных дорог стремятся к возможно меньшей крутизне уклонов. Одним из основных параметров железнодорожной ли-
ниии является её руководящий уклон, представляющий собой наибольший затяжной подъем, по значению которого и устанавливается норма массы поезда при одиночной тяге и расчетная минимальная скорость движения. Руководящий уклон зависит от категории линии, топографических условий и устанавливается технико-экономическими расчетами.

Смежные элементы продольного профиля главных путей на станциях, разъездах, обгонных пунктах и подходах к ним следует сопрягать в вертикальной плоскости кривой радиусом \(R \):

- 20 000 м – на скоростных линиях;
- 15 000 м – на линиях I и II категорий;
- 10 000 м – на линиях особо грузонапряженных и линиях III категории;
- 5 000 м – на железнодорожных линиях IV категории.

Тангенс вертикальной кривой определяется по формуле

\[
T_n = \frac{\Delta i R_n}{2000},
\]

где \(R_n \) – радиус вертикальной кривой, м;
\(\Delta i \) – разность сопрягающих элементов.

Вертикальные кривые допускается не предусматривать при алгебраической разности крутизны уклонов смежных элементов профиля в случаях:

- менее 2 \(\% \) и радиусе вертикальной кривой \(R_n = 20 000 \text{ м} \);
- 2,3 \(\% \) и \(R_n = 15 000 \text{ м} \);
- 2,8 \(\% \) и \(R_n = 10 000 \text{ м} \);
- 4 \(\% \) и \(R_n = 5 000 \text{ м} \).

Вертикальные кривые должны проектироваться вне переходных кривых, а также вне пролетных строений мостов и путепроводов с безбалластной проезжей частью, вне стрелочных остяков и крестовин, замедлителей.

Стрелочные переводы на главных и приёмно-отправочных путях следует располагать вне пределов вертикальной кривой. Для проектируемых линий принимается руководящий уклон (табл. 1.3).

Таблица 1.3

| Основные нормы для проектирования продольного профиля железнодорожных линий колеи 1 520 мм |
|-----------------|----------|----------|-----------------|
| **Категория линии** | **Скорость движения, км/ч** | **Радиус вертикальной кривой, м** | **Крутизна руководящего уклона, \(\% \)** |
| Скоростные | до 200 | 20 000 | 20 |
| Особо грузонапряженные | до 120 | 10 000 | 9 |
| I категория | до 160 | 15 000 | 12 |
| II категория | до 160 | 15 000 | 15 |
| III категория | до 120 | 10 000 | 20 |
| IV категория | до 80 | 5 000 | 30 |

10
Длина элементов продольного профиля должна быть, как правило, не менее половины длины обращающихся поездов, принятой на перспективу. При этом под поездом должно быть одновременно не более двух пе-
реломов профиля.

Станции, разъезды и обгонные пункты следует располагать на гори-
зонтальной площадке. При соответствующем обосновании допускается располагать раздельные пункты на уклонах не круче 1,5 %, а в трудных условиях – не круче 2,5 %.

Длина станционных площадок на новых линиях должна устанавли-
ваться в зависимости от полезной длины приемо-отправочных путей на перспективу, а также от типа расположения приемо-отправочных путей (продольное, полупродольное, поперечное), и должна быть не менее ука-
занной в табл. 1.4.

<table>
<thead>
<tr>
<th>Разделный пункт</th>
<th>Минимальная длина станционной площадки (для новой линии) при расположении приемо-отправочных путей, м</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>продольное</td>
</tr>
<tr>
<td>Разъезд</td>
<td>2 450</td>
</tr>
<tr>
<td>Обгонный пункт</td>
<td>2 600</td>
</tr>
<tr>
<td>Промежуточная станция на линии:</td>
<td></td>
</tr>
<tr>
<td>однопутная и двухпутная</td>
<td>2 900</td>
</tr>
<tr>
<td>Участковая станция на линии:</td>
<td></td>
</tr>
<tr>
<td>однопутная и двухпутная</td>
<td>4 000</td>
</tr>
</tbody>
</table>

План и продольный профиль железнодорожных линий оформляются на одном листе или на отдельных листах. На ситуационном плане наносят ось пути, вершины углов поворота, их номера, начало и конец кривой, пике-
ты и километровые знаки, искусственные сооружения.

На продольном профиле показывают фактическую линию поверхности земли под осью пути и проектную линию, также условными обозначениями –
мости, трубы и другие искусственные сооружения, а кроме того оси стан-
ций, раздельные пункты, оси переездов.

В сетке под продольным профилем указывают отметки поверхности земли на пиках и характерных точках (пересечения с водными преградами, авто-
мобильными дорогами, линиями электропередач и т. д.) Выше в графе пока-
зывают уклоны и длины элементов продольного профиля в виде дроби: в чис-
лите – уклон в промилле, в знаменателе – длину элемента в метрах.

Профиль имеет горизонтальный масштаб 1:10 000 – 1:1000 и вертикальный 1:200 и состоит из собственно профиля (верхняя часть) и сетки (нижняя часть).

Разности между проектными отметками и отметками земли называют рабочими отметками и представляют собой глубину выемок или высоту насыпей (Прил. А).
Железнодорожные пути и сооружения должны быть предохранены от расчетных воздействий снежных, песчаных и земляных заносов и других неблагоприятных природных и техногенных воздействий. Защиту пути от снежных заносов следует предусматривать вдоль всех снегозаносимых участков отдельно для каждой стороны пути с учетом рельефа местности.

К снегозаносимым участкам следует относить стационарные территории, выемки любой глубины, нулевые места, насыпи, высота которых над уровнем расчетной толщины снежного покрова менее 0,7 м на однопутных и 1,0 м на двухпутных линиях.

Контрольные вопросы

1. Что такое план трассы? Из каких элементов состоит план?
2. Что такое продольный профиль линии. Из каких элементов состоит продольный профиль?
3. Формулы расчета элементов плана.
4. Формулы расчета элементов продольного профиля.

2. Понятие железнодорожного пути, нижнего и верхнего строений пути. Конструкция земляного полотна

Железнодорожный путь — это единый комплекс инженерных сооружений, предназначенный для пропуска по нему поездов с установленной скоростью. От состояния пути зависят непрерывность и безопасность движения поездов, а также эффективное использование технических средств железнодорожных дорог.

Железнодорожный путь состоит из нижнего и верхнего строений. Нижнее строение пути включает земляное полотно (насыпи, выемки, полузасыпи, полувыемки, полунасыпи-полувыемки) и искусственные сооружения (мосты, тоннели, трубы, подпорные стены). К верхнему строению пути относятся: балластный слой, шпалы, рельсы, скрепления, противоугонные, стрелочные переводы, мостовые и переводные брусья.

Балластный слой воспринимает давление от шпал и передает его на основную площадку земляного полотна, уменьшая неравномерность давления, а также обеспечивает устойчивость рельсовой колеи, препятствуя продольному и поперечному смещению шпал. Шпалы испытывают давление от рельсов и передают его на балласт, обеспечивая неизменность взаимного расположения рельсовых нитей. Рельсы направляют колеса подвижного состава, воспринимают продольные и поперечные давления от них и передают на шпалы. Рельсовое скрепление служит для соединения рельсов между собой и со шпалами. Противоугонные применяют для удержания рельсов и шпал от продольного смещения под воздействием дви-
жуших поездов. Стрелочные переводы необходимы для перехода подвижного состава с одного пути на другой. Все элементы железнодорожного пути работают как единая конструкция.

Конструкция земляного полотна

Поперечным профилем земляного полотна называется поперечный разрез земляного полотна вертикальной плоскостью, перпендикулярной его продольной оси. Наиболее распространены на железных дорогах насыпи (рис. 1.5) и выемки (рис. 1.6).

Полоса земли, на которую опирается насыпь, называется основанием. Спланированную поверхность землопотна, на которую, укладывают верхнее строение пути, называют основной площадкой. Линию сопряжения с откосом называют бровкой земляного полотна (б.з.п), а линию сопряжения откоса с основанием – подошвой насыпи.

![Рис. 1.5. Типовой поперечный профиль насыпи](image)

![Рис. 1.6. Типовой поперечный профиль выемки глубиной до 12 м с кавальерами при поперечном уклоне местности не круче 1:3](image)

В зависимости от положения основной площадки относительно поверхности земли форма земляного полотна (рис. 1.7) может иметь вид:

- **насыпь**, когда основная площадка, включая два откоса, находится выше уровня земли;

13
– выемки, когда основная площадка расположена ниже уровня земли, и снабжена двумя откосами выемки;
– полусыпи, когда основная площадка выше отметки земли, но откос один;
– полувыемки, когда основная площадка ниже отметки земли, но откос один;
– полусыпи-полувыемки, когда основная площадка находится частично выше отметки земли, а частично ниже и имеет один откос насыпи и один выемки.

Три последних сооружаются на косогорах. Места перехода от насыпи к выемке, где земляное полотно находится на одном уровне с земной поверхностью, которую только планируют, но не срезают, называют нулевыми местами. Земляное полотно на одном уровне с земной поверхностью не устраивают, даже в местах, где рельеф местности это позволяет, так как такие участки сильно заносятся снегом и подвергаются размывам водой. Поэтому в подобных местах устраивают насыпь высотой не менее 0,6 м над уровнем снежного покрова. Основной площадке земляного полотна придают уклоны, при которых исключается возможность застоя на ней воды.

Рис. 1.7. Поперечные профили земляного полотна:
а – насыпь; б – выемка; в – полусыпь; г – полувыемка; д – полусыпь-полувыемка;
e – нулевое место
Поперечные профили земляного полотна на перегонах и станциях

В обычных условиях земляное полотно сооружают согласно типовым поперечным профилям. Ширина основной площадки земляного полотна зависит от категории линии, количества путей и расстояния между ними (табл. 1.5). При этом от оси крайних станционных путей до бровки земляного полотна должно быть не менее половины ширины земляного полотна на прямых участках пути однопутных линий, а на стрелочных улицах и вытяжных путях — не менее 3,25 м.

Крутизна откосов зависит от категории грунтов, высоты насыпи или выемки.

По обеим сторонам насыпи устраивают бермы, т. е. полосы, спланированные в сторону от пути с уклоном 0,02–0,04 %. Ширина бермы не менее 3 м. С нагорной стороны или с двух сторон насыпи устраивают водопроводные канавы. При сооружении вьемок по обе стороны от основной площадки прорывают продольные канавы, называемые кюветами.

Таблица 1.5

<table>
<thead>
<tr>
<th>Категория линии</th>
<th>Число главных путей</th>
<th>Ширина земполотна на прямых участках пути при использовании грунтов, м</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>глинистых, крупнообломочных с глинистым заполнителем, скальных легко выветривающихся и выветривающихся, недренирующих песков мелких и пылеватых</td>
<td>скальных слабовыветривающихся, крупнообломочных с песчаным заполнителем и песков дренажных (кроме, мелких и пылеватых)</td>
</tr>
<tr>
<td>Скоростные и особо грузонапряженные</td>
<td>2</td>
<td>11,7</td>
<td>10,7</td>
</tr>
<tr>
<td>I и II</td>
<td>1</td>
<td>7,6</td>
<td>6,6</td>
</tr>
<tr>
<td>III</td>
<td>1</td>
<td>7,3</td>
<td>6,4</td>
</tr>
<tr>
<td>IV</td>
<td>1</td>
<td>7,1</td>
<td>6,2</td>
</tr>
</tbody>
</table>

Они предназначены для отвода воды, выпадающей в виде осадков. С нагорной стороны устраивают нагорную канаву для отвода поверхностной воды.

Поперечные профили земляного полотна на раздельных пунктах в зависимости от числа путей, рода грунта и количества осадков устраивают односкатными, двускатными или пилообразными.

Поперечный уклон основной площадки в зависимости от грунтов, количества атмосферных осадков принимают 0,01–0,02 %. Число путей на одном скате принимают 6–10. Устойчивость и прочность земляного полотна в значительной степени зависит от наличия и исправности во-
доотводных сооружений и устройств. Для отвода поверхностных вод от земляного полотна предусмотрено устройство кюветов, канав, лотков, а само полотно должно иметь форму, обеспечивающую сток воды с него к водоотводному сооружению. Для защиты откосов от разрушений применяют посев трав, одерновку откосов, мощение камнем, бетонные покрытия и т. д.

Необходимо постоянно контролировать состояние земляного полотна и всех его устройств для того, чтобы не допустить разрушения конструкции и обеспечить безопасность движения поездов.

Поперечные профили железнодорожных линий проектируются в характерных точках (в местах искусственных сооружений, высоких насыпях, глубоких выемках) и на каждом пикете.

На поперечном профиле показывают фактическую линию поверхности земли перпендикулярно оси пути и проектную линию.

В сетке под профилем указывают отметки поверхности земли по краям разреза и под осями путей. Выше в графе показывают уклоны и длины элементов профиля в виде дроби: в числите – уклон в промилле, в знаменателе – длина элемента в метрах.

Профиль имеет горизонтальный и вертикальный масштаб 1:200 и состоит из собственно профиля (верхняя часть) и сетки (нижняя часть) (Прил. Б).

Верхнее строение

Составными элементами **верхнего строения пути** являются балласт, рельсовые опоры (шпалы, плиты, брусья), рельсы, скрепления и стрелочные переводы (рис. 1.8).

![Рис. 1.8. Верхнее строение пути:](image)

1 – песчаный слой; 2 – щебеночный слой; 3 – рельсы со скреплениями; 4 – шпалы

Балластный слой – это основание для рельсовых опор. Он предназначен для восприятия нагрузки от рельсовых опор и распределения ее на
основную площадку. Балласт должен быть прочным, упругим, хорошо пропускать воду, быть морозоустойчивым, не выдуваться и не вымываться, не пылить. Наилучшим материалом для него является щебень, асбест (укладываются на песчаную подушку на главных и станционных путях), гравий, мраморная крошка, ракушка и металлурические шлаки, крупный песок.

Чтобы балластный слой должен быть таким образом отвечал своему назначению, ему придают определенные размеры и форму, называемую балластной призмой. В зависимости от категории линии балластных материалов поперечные профили балластной призмы различны.

Рельсовые опоры служат для передачи давления, воспринимаемого от рельсов балластному слою, обеспечения постоянного расстояния между рельсовыми нитями. Они совместно с балластом обеспечивают устойчивое положение колес колес. К рельсовым опорам относятся шпалы, переводные и мостовые брусья. Наиболее распространенными рельсовыми опорами являются шпалы. Они должны быть прочными и упругими, иметь простую форму, удобную для изготовления и уплотнения балласта, хорошо сопротивляться сдвигу и быть экономичными, обладать достаточным сопротивлением прохождению электрического тока. Длина шпал всех типов – 2 750 мм.

Рельсы служат для направления движения колес подвижного состава, восприятия и передачи воздействия от подвижного состава на рельсовые опоры. Должны иметь ровную поверхность качения, исключающую повышение сопротивления движению. На участке с автоблокированной рельсовыми нитями служат также проводниками сигнального тока, а на участках с электровозной тягой – проводниками обратного тягового тока. В соответствии с ГОСТом существуют 3 типа: Р50, Р65, Р75. Цифра после буквы «Р» обозначает вес погонного метра рельса.

Контрольные вопросы

1. Что такое железнодорожный путь?
2. Виды строения пути.
3. Элементы нижнего строения пути и их назначение.
4. Элементы верхнего строения пути и их назначение.
5. Определение поперечного профиля земляного полотна.
6. Порядок построения поперечного профиля.
7. Виды поперечных профилей земляного полотна.
8. Элементы поперечных профилей насыпей.
9. Элементы поперечных профилей выемок.
3. Станционные пути и основные габаритные расстояния

Классификация железнодорожных путей

Железнодорожные пути (рис. 1.9) делятся на стационарные и специального назначения. Стационарные – это пути в пределах станции, к ним относятся:
- главные;
- приемо-отправочные;
- погрузочно-выгруженные;
- сортировочные;
- вытяжные;
- пути локомотивного и вагонного хозяйства (деповские);
- соединительные;
- пути отстоя вагонов;
- весовые;
- выставочные и др.

К путям специального назначения относятся улавливающие и предохранительные тупики, а также железнодорожные пути необщего пользования различных предприятий (ЖДПНП).

Рис. 1.9. Железнодорожные пути:
1 – главный путь; 2–4 – приемо-отправочные пути; 5 – выставочный путь;
6 – погрузочно-выгруженный путь; 7 – вытяжной путь; 8–10 – предохранительные тупики; 11 – железнодорожный путь необщего пользования; 12 – улавливающий тупик

Главные пути являются продолжением путей перегона, предназначены для пропуска и остановки составов, чаще всего не имеют отклонений по стрелочным переводам.

Приемо-отправочные пути предназначаются для приема, стоянки и отправления поездов со станции на перегон.
Сортировочные пути предназначены для сортировки вагонов, накопления и формирования поездов по назначениям.

Вытяжные пути используются для перестановки составов или вагонов.

Улавливающий тупик предназначен для остановки потерявшего способность торможения поезда при движении по затяжному спуску.

Предохранительный тупик исключает выход подвижного состава на маршруты следования поездов и имеет полезную длину (от предельного столбика до упора) не менее 50 м.

Нумерация железнодорожных путей

Каждый путь на станции должен иметь свой (присвоенный ему) номер. Не допускается присваивать одинаковые номера путям, которые находятся в пределах одной станции, а на крупных, где есть отдельные парки, – в пределах одного парка.

Специализация парков и путей

Правильная специализация путей и парков дает возможность наилучшим способом использовать путевое развитие станции, уменьшить до минимума враждебные маневровые и поездные передвижения, а также наиболее рационально распределить маневровую работу между локомотивами.

На участковой станции выделяют отдельные пути для пассажирских поездов, грузовых поездов (отдельно по направлениям), пропуска локомотивов в депо и из депо под поезда (используются ходовые пути) и маневров по расформированию и формированию составов (сортировочные и вытяжные пути).

На сортировочной станции парки путей специализируют для приема поездов, поступающих в переработку (парк приема), накопления вагонов (сортировочный парк) и отправления сформированных составов (парк отправления). Для транзитных поездов выделяют отдельный парк или специальные пути в парке отправления.
Габариты и основные габаритные расстояния

Для безопасного прохода локомотивов и вагонов мимо устройств и сооружений, находящихся у пути, а также мимо следующего по соседним путям подвижного состава, размещение на станциях различных устройств (складов, пассажирских платформ, служебных зданий, сигналов, опор контактной сети и др.) по отношению к путям, а также расстояния между осями путей должны соответствовать требованиям габарита приближения строения, габарита подвижного состава и габарита погрузки.

Габаритом приближения строения С (рис. 1.10) называется предельное поперечное (перпендикулярное оси железнодорожного пути) очертание, внутри которого, помимо железнодорожного подвижного состава, не должны попадать никакие части сооружений и устройств, а также лежащие около железнодорожного пути материалы, запасные части и оборудование, за исключением частей устройств, предназначенных для непосредственного взаимодействия с железнодорожным подвижным составом (контактные провода с деталями крепления, хоботы гидравлических колонок при наборе воды и др.), при условии, что положение этих устройств во внутригабаритном пространстве увязано с соответствующими частями железнодорожного подвижного состава и что они не могут вызвать соприкосновения с другими элементами железнодорожного подвижного состава.

Рис. 1.10. Габарит приближения строений С

Габарит железнодорожного подвижного состава Т (рис. 1.11) – предельное поперечное (перпендикулярное оси железнодорожного пути) очертание, в котором, не выходя наружу, должен помещаться установлен-
ный на прямом горизонтальном железнодорожном пути (при наиболее не-
благооприятном положении в колее и отсутствии боковых наклонений на
рессорах и динамических колебаний) как в порожнем, так и в нагруженном
состоянии железнодорожный подвижной состав, в том числе имеющий
максимально нормируемые износы.

Габарит погрузки (рис. 1.12) – предельное поперечное (перпендикулярное оси железнодорожного пути) очертание, в котором, не выходя
наружу, должен размещаться груз (с учетом упаковки и крепления) на от-
крытом железнодорожном подвижном составе при его нахождении на
прямом горизонтальном железнодорожном пути.

Рис. 1.11. Совмещенные габариты приближения строений и подвижного состава T

Рис. 1.12. Габарит погрузки
При проектировании станций чаще всего приходится пользоваться нормами, вытекающими из габарита приближения строений С (для новых и реконструируемых линий сети железных дорог общего пользования) или Сн (для путей, сооружений, складов, портов, промышленных предприятий и др.).

Ступенчатое очертание габарита приближения строений на станциях связано с необходимостью устройства низких пассажирских и грузовых платформ высотой 200 мм на расстоянии 1745 мм от оси пути и высоких пассажирских и грузовых платформ высотой 1100 мм на расстоянии 1920 мм от оси пути. Из предельных внешних очертаний следует, что минимально допустимое расстояние до ближайшей грани матп опор контактной сети, светофоров, гидроколонок, матч осветительной сети и других устройств составляет 2450 мм, а нормальное – не менее 3100 мм.

На железных дорогах России габарит подвижного состава Т (рис. 1.11) допускается к обращению по всем путям сети железных дорог общего пользования и железнодорожным путям необщего пользования. Причем подвижной состав по габариту Т может пропускаться только по путям, сооружения и устройства которых отвечают требованиям габарита приближения строений С.

Для проверки габаритности погрузки на открытом подвижном составе (платформы, транспортеры, полувагоны) его пропускают через габаритные ворота, установленные на одном из станционных путей. Внутри подвешены узкие планки, создающие контур очертания габарита погрузки, близкий к габариту 1-Т. Негабаритные грузы, выступающие за пределы этого очертания, могут перевозиться лишь с соблюдением особого порядка следования.

Расстояния между осями смежных путей на станциях

Основные размеры очертаний (габарит приближения строений С, габарит подвижного состава Т и габарит погрузки) определяют расстояния между осями железнодорожных путей.

На раздельных пунктах междупутья должны обеспечивать безаварийность движения поездов и личную безопасность работников, выполняющих операции с подвижным составом, а также возможность размещения путевых сигналов, опор контактной сети, пассажирских или грузовых платформ и др.

При отсутствии устройств в междупутьях расстояния между осями смежных путей на станциях, разъездах и обгонных пунктах в пределах прямых участков пути принимаются по табл. 1.6. Нормальное расстояние, указанное в таблице, принимается на новых линиях и при переустройстве раздельных пунктов. Наименьшее допускается применять при соответствующем обосновании: для новых раздельных пунктов, располагаемых на существующих линиях в особо трудных условиях; для переустраиваемых раздельных пунктов в трудных условиях.
На станциях через каждые 7–8 путей должны предусматриваться уширенные не менее чем до 6 500 мм междупутья, в которых следует размещать все устройства, препятствующие работе машин по текущему содержанию и ремонту пути, а также уборке снега (опоры, мачты, столбы).

Если между путями располагаются какие-либо устройства и сооружения (сигналы, пассажирские платформы и др.), то расстояние между осями путей определяется по формуле

\[e \geq b + 2g, \]

где

\(b \) — ширина устройства или сооружения;

\(g \) — габаритное расстояние от оси пути до устройства или сооружения.

Таблица 1.6

Расстояния между осями смежных путей на раздельных пунктах

<table>
<thead>
<tr>
<th>Наименование путей</th>
<th>Расстояние между осями смежных путей, мм</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>нормальное</td>
</tr>
<tr>
<td>Главные при движении со скоростью:</td>
<td></td>
</tr>
<tr>
<td>до 140 км/ч</td>
<td>5 300</td>
</tr>
<tr>
<td>141–200 км/ч</td>
<td>5 300</td>
</tr>
<tr>
<td>Главные и смежные с ними при движении поездов со скоростью:</td>
<td></td>
</tr>
<tr>
<td>до 140 км/ч</td>
<td>5 300</td>
</tr>
<tr>
<td>141–200 км/ч</td>
<td>7 650</td>
</tr>
<tr>
<td>Приемо-отправочные и сортировочные</td>
<td>5 300</td>
</tr>
<tr>
<td>Второстепенные станционные (пути отстоя подвижного состава, пути грузовых районов, кроме путей для перегрузки)</td>
<td>4 800</td>
</tr>
<tr>
<td>Вытяжные и смежные с ними</td>
<td>6 500</td>
</tr>
</tbody>
</table>

Контрольные вопросы

1. Дайте классификацию путей на раздельных пунктах и примеры путей спецназначения.
2. Какие габариты определяют размещение на раздельных пунктах различных устройств?
3. Какими должны быть расстояния между осями главных путей в прямых участках?
4. Чему равны нормальные расстояния между осями приемо-отправочных, сортировочных путей?
5. Как осуществляется нумерация путей станции?
4. Охрана окружающей среды, экологическая противопожарная безопасность

При сооружении железнодорожных путей необходимо предусматривать комплекс мер по охране окружающей воздушной, водной и наземной среды. Также должны быть разработаны технические решения и мероприятия по предупреждению возникновения возможного неуправляемого геологического процесса, связанного со строительством новых линий. В проектах железных дорог, создаваемых в сложных инженерно-геологических условиях, на грунтах, свойства которых могут меняться во времени, необходимо предусматривать установку специальной контрольно-измерительной аппаратуры и оборудования для проведения натурных наблюдений и прогнозирования. Приборы должны работать как на этапе строительства, так и в период эксплуатации, регулярно проводить проверку надежности и экологической безопасности.

При разработке сооружений должны быть учтены меры по сохранности исторических, этнографических, архитектурных и других памятников.

Природоохранные мероприятия, предусматриваемые при строительстве и эксплуатации железных дорог, должны удовлетворять требованиям действующего законодательства по вопросам охраны окружающей среды, основ земельного законодательства, основ водного законодательства, основ лесного законодательства, основ законодательства о недрах, действующих постановлений, положений, правил, нормативов, инструкций и методических указаний, утвержденных соответствующими органами.

При разработке трассы железнодорожной линии следует предусматривать максимальное сохранение сложившегося экологического равновесия достаточно широкой полосы местности вдоль нее, гармонично увязывая элементы плана и профиля с ландшафтом. Архитектурную композицию проектируемой линии в целом, так же как отдельные её инженерные сооружения, следует выбирать с учетом рельефа, наличия растительности, населенных пунктов, транспортных коммуникаций, перспективы экономического развития района и других местных условий.

С целью уменьшения числа нарушений природного ландшафта в обжитых районах, как правило, запрещается предусматривать открытие карьеров и резервов в полосе временного отвода, а добычу грунта, дренирующих и каменных материалов следует обеспечивать за счет уширения выемок.

Для защиты от шума движущегося подвижного состава должны быть выполнены требования СНиП II-12-77.

На путях сезонного перемещения диких животных следует проектировать участки пути на эстакадах или в тоннелях для организации пропуска миграционных потоков.

Пересекаемые трассой и мостовыми переходами поймы рек должны быть защищены от заиления и заболеваний, исходя из перспективы
развития мелиорации и сельскохозяйственного освоения прилегающей к дороге территории, а также развития рыбного хозяйства. В необходимых случаях следует проектировать дополнительные водопропускные сооружения и эстакады.

В пределах защитных зон не допускаются: вырубка леса, кустарника, снятие мохорастительного покрова, проезд транспортных средств и строительных машин до промерзания почвы на глубину не менее 50 см, осушение или заболачивание территории в результате строительных работ, устройство карьеров, резервов и канав, строительство временных дорог и других сооружений, за исключением вырубки леса на площадках, занимаемых постоянными сооружениями.

Территория станций и отдельных железнодорожных путей должна быть отделена от жилой застройки санитарно-защитной зоной шириной не менее чем на 100 м при условии обеспечения нормативных требований по шуму на прилегающей к жилой застройке территории. В жилых и общественных зданиях в соответствии со СНиП II-12-77 «Защита от шума».

Для сброса и очистки стоков с зоны станции должны быть предусмотрены ливневая канализация и очистные сооружения, обеспечивающие нормативную очистку стоков. Выбросы загрязняющих веществ в атмосферу от станционных источников загрязнения должны не превышать предельно допустимых выбросов вредных веществ согласно ГОСТ 17.2.3.02.-78. На территории станций должны быть предусмотрены специально оборудованные площадки (места) сбора и временного хранения производственных отходов.

Здания, сооружения и устройства станций должны быть расположены с учетом требований пожарной безопасности смежно-расположенных объектов, особенностей господствующего направления ветров, рельефа местности и сейсмичности района. Грузовые объекты должны иметь инженерно-технические средства охраны.

Территория станции должна быть оборудована системами оповещения о пожаре и чрезвычайных ситуациях.

5. Выбор направления и трассирование вариантов новой железнодорожной линии (практическая часть)

Началу трассировочных работ предшествуют работы по ознакомлению с районом трассирования по топографической карте заданного масштаба (рис. 1.13).

Рекомендуется выделить на карте синим цветом всю гидросеть (озера, реки, ручьи, болота), а коричневым цветом — все водоразделы. Далее, следует выделить все имеющиеся седла (коричневыми крестиками — так обычно выделяют перевалы в горной местности) по линии главных водоразделов как возможные фиксированные точки, наметить линии логов
(голубым пунктиром) и «увидеть» склоны долин. (По логу после дождя или снеготаяния бежит вода – это периодический водоток, вы их не увидите написанными на карте, потому что на карте показаны только постоянные водотоки).

Рис. 1.13. Пример топографической карты местности (часть)

На карте необходимо провести геодезическую линию – кратчайшее расстояние, соединяющее станцию А и направление Б (проведите прямую, соединяющую ось станции А и точку на направлении Б).

Максимально приближаясь к геодезической линии АБ, вы должны проследить возможные варианты трассы, учитывая все высотные и контурные препятствия.

Трассирование на этом этапе сводится к выявлению опорных пунктов, через которые следует провести дорогу по экономическим условиям, и фиксированных точек, которые диктуются топографическими, геологическими и природными условиями. Опорными пунктами являются станция А и точка на направлении Б. Фиксированными точками обычно считаются седловины на водоразделах – ближайшие к геодезической прямой благоприятные места пересечения крупных рек – там, где руслом реки прямое, узкое, а пойма неширокая и незаболоченая, точки обхода населенных пунктов, ценных земель и геологически неблагоприятных мест.

Трасса укладывается между фиксированными точками и опорными пунктами, выдерживая основное направление геодезической линии.

Например, на рис. 1.14 в результате комбинации опорных пунктов и фиксированных точек можно наметить 5 вариантов направления новой железнодорожной линии.

На местности, представленной на рис. 1.14, вполне допустимо среди намеченных направлений трассы наличие участков и вольного (a-B; dN; m-N) и напряженного ходов (B-c; c-d; B-b; b-m; c-m). Вольным ходом называют участки трассы, на которых средние естественные уклоны местности \(i_{ect} \) меньше уклона трассирования \(i_{imp} \), напряженным ходом – участки трассы, на которых средние естественные уклоны местности равны или круче уклона трассирования.
Рис. 1.14. Выявление вариантов направления новой железнодорожной линии:

\(A - B \) – геодезическая прямая; \(B, N \) – опорные пункты трассы;
\(a, b, c, d, m \) – фиксированные точки трассы; -- -- -- -- возможные варианты трассы

Для того чтобы определить средний естественный уклон местности \(i_{\text{ecm(cp), \%}} \), применяют следующую формулу:

\[
i_{\text{ecm(cp)}} = \frac{H_B - H_A}{L_{A-B}},
\]

где \(H_B, H_A \) – отметки точек \(A \) и \(B \) (точка \(B \) имеет большую отметку), м;
\(L_{A-B} \) – расстояние между точками \(A \) и \(B \), км.

Средний естественный уклон местности для примера, изображенного на рис. 1.15, будет определяться следующим образом. Необходимо измерить на карте расстояние между точками \(A \) и \(B \) (\(L_{A-B} = 4 \) км). Затем определить отметки точек \(A \) и \(B \). На рис. 1.15 для этого показаны горизонтали (сечение горизонталей через 10 м). Отметка точки \(A \) равна \(H_A = 15,0 \) м, отметка точки \(B \) равна \(H_B = 54,0 \) м. Определим средний естественный уклон местности для примера, изображенного на рис. 1.15,

\[
i_{\text{ecm(cp)}} = (54,0 - 15,0) / 4 = 9,7 \%,
\]

Для того чтобы определить – напряженный ход или вольный, сначала необходимо рассчитать уклон трассирования \(i_{\text{imp, \%}} \) для варианта трассы по формуле

\[
i_{\text{тр}} = i_{\text{гор}} - i_{\text{экв(cp)}},
\]

где \(i_{\text{гор}} \) – величина ограничивающего уклона (руководящего), \(\% \);
\(i_{\text{экв(cp)}} \) – величина среднего по трассе уклона эквивалентного дополнительному сопротивлению от кривой, принимается равной в зависимости от категории сложности рельефа:
– для I категории – 0,3 %,
– для II категории – 0,6 %,
– для III категории – 0,8 и для IV категории – 1,0 %.

Рис. 1.15. Определение среднего естественного уклона местности
между точкой A и точкой B

Допустим, в примере, приведенном на данном рисунке, участок
трассы проходит по рельефу II категории сложности, следовательно,
\(i_{\text{эк}(cп)} = 0,6 \% \). Руководящий уклон равен (в примере) \(i_p = 11 \% \).

Тогда,
\[i_{\text{пр}} = 11,0 - 0,6 = 10,4 \% . \]

Для вывода о том, какой ход напряженный, а какой вольный, приме-
няют следующие неравенства:
1) если \(i_{\text{ПМ}(cп)} < i_{\text{пр}} \) – вольный ход;
2) если \(i_{\text{ПМ}(cп)} \geq i_{\text{пр}} \) – напряженный ход.

Воспользуемся неравенствами и определим, участок какого хода изоб-
ражен на рис. 1.15. Так как 9,7 \% < 10,4 \% , следовательно, вольный ход.

Трассирование на вольных ходах

Прокладывание железнодорожного полотна ведется по кратчайшему
направлению с обоснованием каждого угла поворота. Для того чтобы об-
ход контурных препятствий (излучин рек, заболоченных мест, населенных
пунктов, заповедников, озер и т. д.) не приводил к излишнему удлинению
трассы, углы поворота должны быть не более 15\(\pm 20^\circ \), а препятствие раз-
мещаться внутри угла поворота. Этого можно достичь, начиная обход пре-
пятствия, как можно дальше от него.

Трассирование на напряженных ходах

В сложных топографических условиях на участках напряженного
хода самым распространенным приемом трассирования является нахожде-
ние на топографической карте в заданном направлении линии предельно допустимого уклона – линии нулевых работ или циркульного хода.

Пусть, например, необходимо на карте из точки A (рис. 1.16) провести трассу в юго-восточном направлении до точки L уклоном трассирования $i_{\text{тр}} = 12 \%$. Для этого необходимо рассчитать раствор циркуля d, мм, по формуле

$$d = \frac{\Delta h}{i_{\text{тр}}}$$

где Δh – высота сечения горизонталей, м.

![Diagram](image)

Рис. 1.16. Укладка циркульного хода на участке трассы $A-L$
(масштаб карты 1:50000, высота сечения горизонталей через 10 м)

В формуле необходимо учесть масштаб карты. Для топографических карт, применяемых в практических работах (1:50 000 и $\Delta h = 10$ м или 1:25 000 и $\Delta h = 5$ м), формула примет вид d, мм

$$d = \frac{200}{i_{\text{тр}}}.$$

Для условий примера, изображенного на рис. 1.16, $d = 200/12 = 16.7$ мм.

Затем из начальной точки A, придерживаясь основного направления трассы, раствором циркуля, равным d, засекают соседнюю горизонталь и получают точку B. Из полученной точки B вновь засекают этим же раствором циркуля точку C на следующей горизонтали и т. д.

При пересечении логов, оврагов (участок $B-L$) к тальвегу не спускаются, а переходят сразу на другую сторону, проводя прямую линию (обычно перпендикулярно тальвегу) до одноименной горизонтали (отмет-
ки точек B и $Г$ одинаковы – 490 м). Так же поступают и при пересечении рек, стремясь, чтобы трасса была примерно перпендикулярна направлению течения реки.

В местах, где расстояние между горизонталями больше принятого раствора циркуля, т. е. там, где естественный уклон местности меньше i_{nr}, точки выбирают свободно в необходимом направлении, так как это участки вольного хода. На рис. 1.16 такой участок $K–L$ (отметки точек K и L одинаковы – 500 м).

Таким образом получают на карте точки A, B, C, D, E, B, $Г$, K, L (на рис. 1.16 соединены пунктиром), образующие на участке $A–B$ линию равных уклонов (уклоном $i_{nr} = 12 \%c$) или так называемую «линию нулевых работ». Это значит, если трассу провести по этой ломаной линии (на участке $A–B$), то для соблюдения проектного уклаона не надо было бы делать ни насыпей, ни выемок (т. е. земляные работы – нулевые, отсюда название).

На рис. 1.16 сплошной линией показано спрямление участков линии нулевых работ – циркульного хода, которое выполняется для того, чтобы не вписывать в каждый угол поворота между шагами циркульного хода – круговую кривую. В противном случае, число небольших по углу поворота и протяженности кривых было бы велико, что затруднило бы содержание линии с таким планом.

При увязке участков напряженного и вольного хода получается магистральный ход. Магистральный ход представляет собой схематическую трассу, отвечающую определенному значению руководящего уклона, без укладки кривых, но с подбором вершин углов поворота и предварительным учетом возможного размещения площадок раздельных пунктов.

5.1. Построение плана трассы

Полученную в результате предварительного трассирования ломанную линию необходимо заменить более длинными прямоилинейными отрезками (на участках напряженного хода). Спраямляющие линии не должны значительно отклоняться от линии нулевых работ.

Точки пересечения прямых определяют местоположение вершин углов поворота трассы. В каждый угол поворота, согласно принятым нормам, вписывается кривая определенного радиуса с помощью шаблона круговых кривых. На рис. 1.17 показан пример такого вписывания круговых кривых (участок трассы напряженным ходом поднимается по склону долины, тонкими сплошными линиями показаны шаги циркульного хода, углосеченной сплошной линией показан пан трассы, светло-серый контур – фрагмент шаблона круговых кривых, с помощью которого вписаны кривые, BV – вершина угла поворота).
Рис. 1.17. Вписывание круговых кривых с помощью шаблона

Угол поворота трассы α, (град.), измеряется транспортиром с точностью до 0,5°. Направление поворота кривой (вправо или влево) определяется по ходу трассы, т. е. по направлению $A\rightarrow B$. На рис. 1.17 первая кривая ($\alpha_1 = 50°$, $R_1 = 2000$ м), вторая кривая ($\alpha_2 = 35°$, $R_2 = 1000$ м). По назначенному радиусу R, (м) и измеренному углу поворота α, (град.) определяются остальные параметры круговой кривой: тангенс круговой кривой T, (м) рассчитывается по формуле $T = R \cdot \tan \frac{\alpha}{2}$, а длина круговой кривой K, (м) определяется по формуле $K = \frac{\pi R \cdot \alpha}{180}$, после сокращений $K = 0,017453292 \cdot R \cdot \alpha$.

5.2. Проектирование продольного профиля земляного полотна железнодорожной линии

Итак, профилем называют уменьшенное изображение вертикального разреза местности по заданному направлению.

Например, пусть требуется построить профиль местности по линии DE, указанной на карте (рис. 1.18). Для построения профиля на листе бумаги (как правило, используется миллиметровая бумага) проводят горизонтальную прямую, и на ней, обычно в масштабе карты (плана), откладывают линию DE и точки её пересечения с горизонтальными и полувертикалями.

Далее из этих точек по перпендикулярам откладывают отметки соответствующих горизонталей (на рис. 1.18 это отметки 50, 55, 60, 65, 70, 75, 80 и 82,5 м). Чтобы отобразить профиль более рельефно, отметки точек от-
Составление схематического продольного профиля ведется в следующих масштабах: горизонтальном, равном масштабу карты (при масштабе карты 1:50 000 – 1 км на местности соответствует 2 см на карте; при масштабе 1:25 000 – 1 км = 4 см); вертикальном масштабе 1:200 (1 м превышения реальных отметок равен 5 мм на профиле по вертикали).

Проектирование ведется на миллиметровой бумаге, сложенной по формату А4. На профиле должна быть отражена сетка схематического продольного профиля. Для нанесения на него отметок земли можно применять следующий метод: если задание вы делаете вдвоем с товарищем, один из вас садится за карту, а другой – за миллиметровку. Первый называет отметки характерных точек рельефа по трассе и говорит расстояния между ними, выраженные в миллиметрах, а второй – в сетке профиля, в графе «Ордinate», – делает засечку, а в графе «Отметка земли, м» подписывает значение высоты.

По полученным ординатам и отметкам земли на сетке схематического продольного профиля воспроизводится линия поверхности земли по трассе. Ординаты и линия поверхности земли показывают тонкой сплошной линией (рис. 1.19).

Продольный профиль и план железной дороги, согласно Правилам технической эксплуатации (ПТЭ), должны обеспечивать безопасное и плавное движение поездов с установленными скоростями.

Точка пересечения двух смежных элементов называется переломом профиля, а расстояние между переломами – длиной элемента. При проектировании железных дорог различают ограничивающие уклоны, определя-
юющие наибольшую допускаемую крутизну элементов профиля, одним из которых является руководящий уклон. Руководящим уклоном i_p называет-ся наибольший затяжной подъем, по значению которого устанавливается норма массы поезда при одиночной тяге и расчетной минимальной скорости движения.

Рис. 1.19. План местности и продольный профиль по линии A–B
Крутизна этого уклона зависит от категории линии, рельефа местности, типа локомотивов, обращающихся на данном участке, и устанавливается технико-экономическими расчетами.

На особо грузонапряженных железнодорожных линиях наибольшая крутизна руководящего уклона ограничивается значением 9 %, на линиях I категории – 12 %, на линиях II категории – 15 %, на линиях III категории – 20 % и т. д. Таким образом, чем ниже категория линии, тем круче руководящий уклон.

Для обеспечения безопасности и плавности движения поездов решающее значение имеет правильное назначение длины элементов профиля. Продольный профиль следует проектировать возможно большими элементами, каждый из которых должен быть не меньше половины длины обращающихся поездов. При этом под поездом будет располагаться одновременно не более двух переломов профиля. При расположении поезда одновременно на выпуклом и вогнутом участках профиля (рис. 1.20), между ними проектируются разделительные площадки.

![Рис. 1.20. Расположение поезда на нескольких переломах профиля](image)

Немаловажное значение имеет алгебраическая разность сопрягаемых уклонов, зависящая от категории железной дороги и полезной длины станционных приемо-отправочных путей (табл. 1.7). Продольный профиль (рис. 1.21) вычерчивают в таких масштабах: горизонтальном – 1:10 000, вертикальном – 1:200. Нижняя его часть называется сеткой, а верхняя представляет собой собственно профиль.

На сетке продольного профиля снизу указываются пикеты (обозначаются ПК) и километры. Каждый километр пути содержит 10 ПК по 100 м.

Над графой пикетов проставляются существующие отметки земли, которые называются черными. Выше черных отметок расположена графа, в которой для каждого элемента профиля указываются проектные уклоны и длины элементов. Наклон линии снизу вверх означает подъем, а сверху вниз – спуск.

Над проектными уклонами расположена графа, в которой вписаны проектные отметки земляного полотна, называемые красными. Они отличны от того же неизменяемого уровня, что и черные. Разности между красными и черными отметками называют рабочими отметками. Они показывают высоту насыпи (цифры над линией проектного профиля) и глубину выемок (цифры под линией проектного профиля), измеряемых в метрах.
Рекомендуемые нормы проектирования элементов продольного профиля [9]

<table>
<thead>
<tr>
<th>Категория железнодорожной линии, подъездного пути</th>
<th>Наибольшая алгебраическая разность уклонов смежных элементов профиля (i_{n}, %) (числитель) и наименьшая длина разделительных площадок и элементов переходной кривизны (I_{n}, \text{м}) (знаменатель) при полезной длине приемо-отправочных путей, (\text{м})</th>
</tr>
</thead>
<tbody>
<tr>
<td>850</td>
<td>1 050</td>
</tr>
</tbody>
</table>

Рекомендуемые нормы

Скоростная	6/250	4/300	–	–
Особо грузонапряженная	–	3/250	3/250	3/400
I	6/200	4/250	3/250	3/300
II	8/200	5/250	4/250	3/300
III	13/200	7/200	7/250	4/253
IV	13/200	3/200	3/250	–

Допускаемые нормы

Скоростная	10/250	9/300	–	–
Особо грузонапряженная	–	10/200	5/250	4/300
I	13/200	10/200	5/250	4/300
II	13/200	10/200	6/250	4/250
III	13/200	10/200	8/250	4/250
IV	20/200	10/200	10/200	–

Рис. 1.21. Продольный профиль линии

Пример расчета уклонов для профиля, изображенного на рис. 1.21.
Проектные уклоны рассчитываются по следующей формуле:
- уклон первого элемента
 \[
i_1 = \frac{23.5-21.5}{1000} = \frac{2}{1000} = 0.002 = 2 \%c \text{ (подъём)};\]
- уклон второго элемента
 \[i_2 = \frac{23.5 - 23.5}{500} = 0 \% \text{ (площадка)}; \]
- уклон третьего элемента
 \[i_1 = \frac{21.0 - 23.5}{500} = -0.005 = -5\% \text{ (спуск)}. \]

Алгебраическая разность смежных уклонов определяется следующим образом:

\[\Delta i = |i_2 - i_1| = |0 - 2| = 2 \% ; \]
\[\Delta i = |i_3 - i_2| = |-5 - 0| = 5 \%. \]

Проектные отметки рассчитываются для каждого пикета. Для этого к отметке предыдущего прибавляется уклон, умноженный на длину пикета, деленный на 1000 (знак уклона «+» или «−» сохраняется).

Например, для первого элемента профиля (рис. 1.21):
- на пк 1 отметка составит
 \[21.5 + \frac{2 \cdot 100}{1000} = 21.7 \text{ м}; \]
- на пк 2 отметка составит
 \[21.7 + \frac{2 \cdot 100}{1000} = 21.9 \text{ м}. \]

Для второго элемента отметки останутся неизменными, так как \(i = 0 \% \).

Для третьего элемента:
- на пк 16
 \[23.5 + \frac{(-5 \cdot 100)}{1000} = 23.0 \text{ м}; \]
- на пк 17
 \[23.0 + \frac{(-5 \cdot 100)}{1000} = 22.5 \text{ м}; \]
- на пк 18
 \[22.5 + \frac{(-5 \cdot 100)}{1000} = 22.0 \text{ м}; \]
- на пк 19
 \[22.0 + \frac{(-5 \cdot 100)}{1000} = 21.5 \text{ м}. \]

Отметки по концам элементов выбираются самостоятельно, исходя из условий проектирования продольного профиля, учитывая длины элементов и алгебраические разности смежных уклонов.

Рабочие отметки также рассчитываются по каждому пикету и записываются со знаком «+» выше линии проектного профиля, со знаком «−» ниже линии проектного профиля.

5.3. Порядок построения поперечного профиля

1. Построение поперечного профиля начинается с изображения линии земли с учетом заданного поперечного уклона местности. Для насыпи основной чертеж будет расположен выше этой линии, поэтому линию земли следует сместить относительно середины листа на не-
сколько сантиметров вниз. Для выемки линия земли располагается чуть выше середины листа.

2. Затем следует изобразить ось земляного полотна. Ее располагают со смещением в сторону низких высот (при наличии уклона), поскольку и резерв, и кавальер с банкетом целесообразно размещать с нагорной стороны. Если же местность горизонтальная и отсутствует резерв или кавальер, ось земляного полотна располагают посереди листа. При наличии одного из указанных элементов его достаточно показать с одной стороны, и поэтому ось земляного полотна смещается в другую сторону относительно середины листа. При горизонтальной местности водоотводные устройства должны быть с обеих сторон (резервы и водоотводные канавы у насыпей, банкеты и канавы у выемок).

3. Далее наносят оси и номера путей, междупутные расстояния. От осей крайних путей в обе стороны откладывают расстояние до бровки земляного полотна.

4. Затем расстояние между путями I и II делят пополам и получают ось продольного водораздела – вершину сливной призмы. Чтобы определить проектную отметку вершины сливной призмы, необходимо из продольного профиля выбрать проектную отметку бровки земляного полотна в заданном сечении. Проектная отметка вершины сливной призмы будет определена как проектная отметка из продольного профиля плюс 0,15 м (для однопутных линий) или плюс 0,20 м (для двухпутных). Например, проектная отметка вершины сливной призмы будет 15,82 + 0,20 = 16,02 м.

5. Затем определяют отметки земли аналогично продольному профилю. Выбирают условный «ноль отсчета» и строят линию земли.

6. Рассчитываются проектные отметки для всех путей. Затем вычерчивают линию земляного полотна до его бровок.

7. От бровок до пересечения с уровнем земли проводятся линии откосов (для насыпей) или откосы кюветов (для выемки). Затем от подошвы откоса откладывается размер бермы. Полученная точка – это бровка резерва или водоотводной канавы. Из этой же точки проводится линия с уклоном 0,02…0,04 % относительно горизонта до пересечения с откосом насыпи. Это и будет изображение бермы.

8. Если строится поперечный профиль выемки, то с двух сторон вычерчивают кюветы глубиной 0,6 м с крутой откосами 1:1,5. Если строится поперечный профиль насыпи, то с обеих сторон от ее бровок делают откосы 1:1,5, а затем откладывают по 3 м для бермы. Если участок однопутный, то со стороны укладки будущего второго пути берма увеличивается на 4,1 м.

Пример оформления поперечного профиля приведен в Прил. Б.
Глава 2. РАСЧЕТ ОСНОВНЫХ УСТРОЙСТВ ЖЕЛЕЗНОДОРОЖНОЙ СТАНЦИИ И ОПРЕДЕЛЕНИЕ КООРДИНАТ СТРЕЛОЧНОЙ УЛИЦЫ

Практическая работа № 1
Стрелочные переводы. Взаимное расположение стрелочных переводов

Для перехода подвижного состава с одного пути на другой служат стрелочные переводы. Наибольшее распространение на железных дорогах мира получили обыкновенные стрелочные переводы.

Обыкновенный стрелочный перевод может быть право- или левосторонним и применяется при отклонении бокового пути от прямого в ту или иную сторону. Сторонность определяется при рассмотрении стрелочного перевода с остраков.

Конструкция стрелочного перевода состоит из стрелки, включающей два рамных рельса, двух подвижных остраков и переводного механизма; крестовины, состоящей из сердечника и двух усовиков, двух контррельсов, обеспечивающих направление гребней колес в соответствующие желоба крестовины; соединительных рельсовых нитей (к ним относится и переводная кривая), располагающихся между концом рамных рельсов и началом крестовины; переводных брусьев (рис. 2.1).

![Diagram of a rail switch](image)

Рис. 2.1. Стрелочный перевод в "рельсовых нитях"

При проектировании станций необходимо руководствоваться следующими основными размерами стрелочных переводов:

- L_n – полная длина перевода;
- a – расстояние от стыка рамного рельса до центра перевода;
- b – расстояние от центра перевода до торца крестовины;
- e – ширина колеи.
Основные размеры обыкновенных стрелочных переводов приведены в Прил. Г.
Пересечение осей главного и бокового путей образуют угол стрелочного перевода \(\alpha \), который соответствует углу сердечника крестовины.
Точка пересечения осей называется центром стрелочного перевода (ЦП).
Важнейшим параметром стрелочного перевода является марка крестовины \(M \).
Маркой крестовины стрелочного перевода называется отношение ширины сердечника крестовины к его длине (тангенс угла крестовины)
\[
M = \frac{1}{N},
\]
где \(N \) – знаменатель марки крестовины.
Для определения марки стрелочного перевода на местности нужно измерить длину сердечника и разделить на его ширину в корне. Частное будет равно знаменателю марки.
Принято изображать стрелочные переводы в осях путей.
Стрелочные переводы должны иметь марки крестовин, не круче указанных в табл. 14 п. 6.17 СТН Ц-01-95:
– на главных и приемо-отправочных пассажирских путях не круче 1/11, на существующих раздельных пунктах допускается отклонение пассажирских поездов на боковой путь по стрелочным переводам марки 1/9;
– на приемо-отправочных путях грузового движения не круче 1/9, а симметричные – не круче 1/6; на прочих путях не круче 1/8, применяются марки 1/9;
– для безостановочного пропуска поездов по боковому пути следует укладывать стрелочные переводы с марками крестовин 1/18 и 1/22, а в обоснованных случаях – 1/11.
Стрелочные переводы, укладываемые на одном пути, могут иметь различное взаимное расположение (рис. 2.2):
– укладка стрелочных переводов навстречу друг другу по разные стороны пути (схема 1) и по дну сторону пути (схема 2);
– попутная укладка стрелочных переводов, расположенных по разные стороны от основного пути (схема 3).
Между стыками рамных рельсов в этих схемах предусматривается конструктивная прямая вставка \(d \). Длина вставки (стандартная рубка) \(d \) принимается в зависимости от схемы укладки и назначения путей – 25 м; 12,5 м; 6,25 м; 4,5 м; 0 м.
Расстояние между центрами стрелочных переводов в этих схемах определяется по следующим формулам:
для схемы 1 и 2 \(L = a_1 + d + a_2 \);
dля схемы 3 \(L = b_1 + d + a_2 \).
При попутной укладке двух стрелочных переводов по одну сторону пути (схема 4) и при торцевой укладке (схема 5) расстояние между центрами переводов зависит от заданного расстояния между осями путей e. Это нужно для того, чтобы обеспечить безопасность одновременных передвижений по обоим боковым путям. Между стыками рамных рельсов в этих схемах предусматривается расчетная прямая вставка p.

Схема 1

Схема 2

Схема 3

Схема 4

Схема 5

Рис. 2.2. Схемы взаимного расположения смежных стрелочных переводов

Расстояние между центрами стрелочных переводов в этих схемах и прямая вставка p определяются по следующим формулам:

для схемы 4 $L = \frac{e}{\sin \alpha}$, $p_{1-2} = \frac{e}{\sin \alpha} - b_1 - a_2$;

для схемы 5 $L = \frac{e}{\sin \alpha}$, $p_{1-2} = \frac{e}{\sin \alpha} - b_1 - b_2$.

Расстояние между осями путей должно быть не менее 4,8 м.

В практической работе 1 следует:
– изобразить схему обыкновенного стрелочного перевода в рельсовых путях, указать условные геометрические размеры в метрах (с точностью до двух знаков после запятой);
– определить минимальное расстояние между центрами переводов в схемах 1–5, определить значения прямых вставок p;
– вычертить схему, указать основные размеры, привести необходимые расчетные формулы.
Условия для решения задач представлены в табл. 2.1.

Таблица 2.1

<table>
<thead>
<tr>
<th>Последняя цифра шифра</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Марка крестовины</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>11</td>
<td>18</td>
<td>22</td>
<td>9</td>
<td>18</td>
<td>11</td>
<td>22</td>
<td>11</td>
<td>9</td>
</tr>
<tr>
<td>Марки крестовин (для схем)</td>
<td>1</td>
<td>11</td>
<td>9</td>
<td>9</td>
<td>1</td>
<td>11</td>
<td>18</td>
<td>11</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Расстояние между осями ж.-д. путей, (e)</td>
<td>5,3</td>
<td>5,2</td>
<td>4,8</td>
<td>6,5</td>
<td>4,8</td>
<td>4,8</td>
<td>5,3</td>
<td>5,0</td>
<td>4,8</td>
<td>5,3</td>
</tr>
<tr>
<td>Тип рельсов</td>
<td>P50</td>
<td>P50</td>
<td>P65</td>
<td>P50</td>
<td>P65</td>
<td>P65</td>
<td>P65</td>
<td>P50</td>
<td>P65</td>
<td>P65</td>
</tr>
<tr>
<td>Стандартная прямая вставка, (d)</td>
<td>6,25</td>
<td>12,5</td>
<td>6,25</td>
<td>12,5</td>
<td>25</td>
<td>12,5</td>
<td>25</td>
<td>12,5</td>
<td>6,25</td>
<td>25</td>
</tr>
</tbody>
</table>

Контрольные вопросы

1. Назначение стрелочных переводов.
2. Основные элементы конструкции стрелочных переводов.
3. Что называется маркой крестовины стрелочного перевода?
4. Марки стрелочных переводов, применяемые в настоящее время.

Практическая работа № 2
Соединение двух параллельных путей

Соединение двух параллельных путей между собой осуществляется с помощью стрелочного перевода и укладки за ним сопрягающей кривой (рис. 2.3). Радиус сопрягающей (за крестовиной) кривой \(R \) должен быть не менее радиуса переводной кривой стрелочного перевода.

Радиус кривых, укладываемых за переводами марки 1/9, обычно равен 300–500 м, а за переводами марки 1/11 и 1/18 – 400–500 м.

От торца крестовины до начала сопрягающей кривой (при \(R < 350 \) м) для разгонки уширения колеи в кривой должен быть прямой участок.
Необходимо соблюдать техническое условие: расстояние между концом переводной кривой и началом сопрягающей кривой за крестовиной должно быть не менее 12 м. При выполнении этого за торцом крестовины остается прямая вставка \(k = 6,21 \) м для стрелочного перевода М 1/11, \(k = 8,06 \) м для – М 1/9, а общее расстояние от центра перевода до начала кривой \(b_i = b + k \) будет – 26 м для М1/11; 24 м для М1/9 и 20 м для М1/6.

В трудных условиях на прочих путях прямая вставка может не укладываться.

Рис. 2.3. Соединение двух путей под углом крестовины

При расчете этого простейшего соединения обычно известны расстояния между осями путей \(e \), данные о стрелочном переводе, основные размеры: \(a, b \) угол \(\alpha \) и радиус сопрягающей кривой \(R \)

\[
L = \frac{e}{\sin \alpha}; \quad L = b + f + T; \quad f = \frac{e}{\sin \alpha} - b - T, \quad T = R \cdot \tan \frac{\alpha}{2}.
\]

Вставка \(f \) должна быть не меньше расчетной \(k (f \geq k) \).

Определение подлежит координаты вершины углов поворота \(X, Y \), тангенс кривой \(T \), длина кривой \(K \)

\[
X = \frac{e}{\tan \alpha}; \quad Y = e; \quad K = \frac{\pi R \alpha}{180} = 0,017453 R \alpha.
\]

Соединение двух путей при больших расстояниях между осями путей занимает много места в длину, поэтому при междупутьях более 6,5 м, станционные пути примыкают друг к другу сокращенным соединением (рис. 2.4), в котором после стрелочного перевода укладывается дополнительная кривая, увеличивающая угол наклона, благодаря чему общая длина соединения уменьшается.
Рис. 2.4. Сокращенное соединение двух параллельных путей

При расчете сокращенного соединения обычно известны величины E, d_0, R, данные о стрелочном переводе (a, b, α) и значение вставок f и k. Для определения угла β вводят вспомогательный угол φ. Если спроектировать на вертикальную ось замкнутый контур AMO1O2CA, то

$$b_1 \cdot \sin \alpha + R \cdot \cos \alpha - O_1O_2 \cdot \cos(\beta + \varphi) + (R - E) = 0,$$

$$\cos(\beta + \varphi) = \frac{(b_1 \cdot \sin \alpha + R \cdot \cos \alpha + R - E) \cdot \cos \varphi}{2R},$$

$$\tan \varphi = \frac{d_0}{2R}, \quad O_1O_2 = \frac{2R}{\cos \varphi}.$$

Определив угол β, можно найти длины тангенсов T_1 и T_2 и посчитать координаты $BY1$ и $BY2$, приняв за начало координат центр перевода

$$T_1 = R \cdot \tan \left(\frac{\beta - \alpha}{2}\right), \quad T_2 = R \cdot \tan \frac{\beta}{2},$$

$$X_{BY1} = (b_1 + T_1) \cdot \cos \alpha, \quad Y_{BY1} = (b_1 + T_1) \cdot \sin \alpha,$$

$$X_{BY2} = X_{BY1} + (T_1 + d_0 + T_2) \cdot \cos \beta,$$

$$Y_{BY2} = Y_{BY1} + (T_1 + d_0 + T_2) \cdot \sin \beta.$$

Контроль правильности расчета заключается в том, что Y_{BY2} должен быть равен значению E.

В практической работе 2 при заданных величинах – марка крестовины, расстояние между осями путей, радиус сопрягающей кривой – необходимо:

– определить полную длину простого соединения;
– координаты вершин углов поворота X, Y тангенсы кривой T;
– длину кривой \(K \).
Условия для решения задач представлены в табл. 2.2.

<table>
<thead>
<tr>
<th>Последняя цифра шифра</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Марка крестовины</td>
<td>1/11</td>
<td>1/9</td>
<td>1/9</td>
<td>1/11</td>
<td>1/9</td>
<td>1/9</td>
<td>1/9</td>
<td>1/11</td>
<td>1/11</td>
<td>1/9</td>
</tr>
<tr>
<td>(e)</td>
<td>5.3</td>
<td>4.8</td>
<td>5.3</td>
<td>4.1</td>
<td>4.8</td>
<td>5.0</td>
<td>5.2</td>
<td>5.0</td>
<td>5.0</td>
<td>5.3</td>
</tr>
<tr>
<td>(R)</td>
<td>200</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>200</td>
<td>300</td>
<td>200</td>
<td>250</td>
<td>200</td>
<td>300</td>
</tr>
<tr>
<td>Тип рельсов</td>
<td>P65</td>
<td>P50</td>
<td>P65</td>
<td>P50</td>
<td>P65</td>
<td>P50</td>
<td>P65</td>
<td>P50</td>
<td>P65</td>
<td>P50</td>
</tr>
</tbody>
</table>

Таблица 2.2

Контрольные вопросы

1. Основные элементы простого соединения.
2. Основные элементы сокращенного соединения.
3. Для чего устраивается сокращенное соединение путей?
4. Расстояния от центра стрелочного перевода до начала кривой?

Практическая работа № 3
Съезды между параллельными путями

Съезды бывают простые, перекрестные и сокращенные.
Простые съезды состоят из двух стрелочных переводов и расчетной пря-
мой вставки \(f \) между ними (рис. 2.5, а).
Длина простого несокращенного съезда и его проекция определяют-
ся по формулам

\[
L_{\text{полн}} = a + L_x + a, \quad L_x = \frac{e}{\tan \alpha}.
\]

Расстояние между центрами стрелочных переводов и расчетная пря-
мая вставка

\[
L = \frac{e}{\sin \alpha} = b + f + b; \quad f = \frac{e}{\sin \alpha} - 2b.
\]

В стесненных условиях, когда нельзя последовательно уложить два обратных съезда, они могут быть уложены в виде перекрестного съезда с глу
хим пересечением, имеющим угол 2\(\alpha \) (рис. 2.5, б).
Длина перекрестного съезда, его проекция определяются аналогич-
но по формулам
\[L_{\text{max}} = L_X + a + a; \quad L_X = \frac{e}{\tan \alpha}; \quad L = \frac{e}{\sin \alpha}. \]

а)

Рис. 2.5. Схемы съездов между параллельными путями:
а) простой съезд; б) перекрестный съезд

Укладка перекрестного съезда возможна, если будет выполнено условие

\[
L \geq (2b + L_{II}) ,
\]

где \(L_{II} \) – длина глухого пересечения;
при P65 – М 2/11 \(L_{II} = 19,660 \) м, М 2/9 \(L_{II} = 16,280 \) м;
при P50 – М 2/11 \(L_{II} = 19,240 \) м, М 2/9 \(L_{II} = 15,750 \) м, М 2/6 \(L_{II} = 10,420 \) м.

При широких междупутях (6,5 м и более) укладывается сокращенный съезд (рис. 2.6) с двумя обратными круговыми кривыми и прямой вставкой между ними \(d_o \). Значение прямой (конструктивной) вставки зависит от назначения пути. 15 м, 20 м, 25 м – для стационарных путей и 50 м, 75 м, 100 м, 150 м – для главных и соединительных.

Найдём дополнительный угол поворота \(\beta \) из формулы

\[
\cos(\beta + \varphi) = \frac{(2b_1 \sin \alpha + 2R \cos \alpha - E) \cos \varphi}{2R} ,
\]

\[
\tan \varphi = \frac{d_0}{2R} .
\]

Определив угол \(\beta \), находим длину тангенса \(T \) для угла \((\beta - \alpha) \) и координаты вершин углов \(B\text{Y}1 \) и \(B\text{Y}2 \), приняв за начало координат центр перевода \(II \)

\[
T = R \cdot \tan \left(\frac{\beta - \alpha}{2} \right) ,
\]

\[
X_{\text{B}Y1} = (b_1 + T) \cdot \cos \alpha , \quad Y_{\text{B}Y1} = (b_1 + T) \cdot \sin \alpha ,
\]

\[
X_{\text{B}Y2} = X_{\text{B}Y1} + (2T + d_0) \cdot \cos \beta ,
\]

\[
Y_{\text{B}Y2} = Y_{\text{B}Y1} + (2T + d_0) \cdot \sin \beta ,
\]

45
\[X_{\text{ЦП2}} = 2 \cdot (b_1 + T) \cdot \cos \alpha + (2T + d_0) \cdot \cos \beta, \]
\[Y_{\text{ЦП2}} = E. \]

В практической работе 3 при заданных величинах (марки крестовины и расстояния между осями путей) необходимо:
– уложить простой, перекрестный съезды;
– рассчитать координаты центров стрелочных переводов.

Рис. 2.6. Схема сокращенного съезда

Условия для решения задач представлены в табл. 2.3.

Таблица 2.3

<table>
<thead>
<tr>
<th>Последняя цифра цифра шифра</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Марка крестовины</td>
<td>1/11</td>
<td>1/9</td>
<td>1/9</td>
<td>1/11</td>
<td>1/9</td>
<td>1/9</td>
<td>1/9</td>
<td>1/11</td>
<td>1/9</td>
<td>1/9</td>
</tr>
<tr>
<td>Тип рельса</td>
<td>P65</td>
<td>P50</td>
<td>P65</td>
<td>P65</td>
<td>P50</td>
<td>P50</td>
<td>P65</td>
<td>P65</td>
<td>P50</td>
<td>P50</td>
</tr>
<tr>
<td>(e)</td>
<td>5.0</td>
<td>4.8</td>
<td>5.2</td>
<td>4.1</td>
<td>4.8</td>
<td>5.0</td>
<td>5.2</td>
<td>4.1</td>
<td>5.0</td>
<td>5.3</td>
</tr>
</tbody>
</table>

Контрольные вопросы

1. Назначение съездов.
2. В каких случаях устраивается перекрестный съезд?
3. В каких случаях устраивается сокращенный съезд?
4. Из каких элементов состоит обыкновенный съезд?
Практическая работа № 4
Параллельное смещение путей

Для перехода от междупутья 4,1 м на перегоне к междупутью 5,3 м на станции, а также при увеличении стационарных междупутий более 5,3 м с целью устройства различных сооружений производится параллельное смещение одного из путей (рис. 2.7).

Чтобы рассчитать параллельное смещение стационарного пути задаются значения вставок d_0 между обратными кривыми, радиус R и определяют угол кривой β, его параметры T, K и полную длину уширения $L_{ПОЛ}$.

![Diagram](attachment:image.png)

Рис. 2.7. Параллельное смещение путей

Проекцира на вертикальную ось элемент контура $AO1O2B$, получим

$$O_1O_2 \cos(\beta + \varphi) = 2R - E - e.$$

Подставляем вместо O_1O_2 его значение $O_1O_2 = \frac{2R}{\cos \varphi}$, где $\tan \varphi = \frac{d_0}{2R}$.

Решая это уравнение, получим $\cos(\beta + \varphi) = \frac{(2R - S)\cos \varphi}{2R}$, где $S = E - e$.

Определив угол β, находим T, K и $L_{ПОЛ}$

$$T = R \cdot \tan \frac{\beta}{2}; \quad K = \frac{\pi R \beta}{180} = 0,017453 \ R \cdot \beta; \quad L_{ПОЛ} = 2T + (2T + d_0)\cos \beta.$$

При смещении главных путей (в зависимости от категории пути) применяются кривые больших радиусов 4000÷1200 м с переходными кривыми 20÷40 м. Между концами переходных кривых должна быть прямая длиной не менее 50÷75 м, а в трудных условиях – 30 м. При смещении стационарных путей радиусы кривых можно принимать 500÷200 м, вставка между концами обращенных в разные стороны кривых на путях, по которым пропускаются организованные поезда, должна быть не менее 15 м, на прочих путях прямую вставку можно не устраивать.
В практической работе 4 при заданных величинах (расстояние между осями путей, радиус сопрягающей кривой, прямая вставка между обратными кривыми) необходимо:
– рассчитать координаты центров вершин углов поворота;
– определить полную длину смещения путей.
Условия для решения задач представлены в табл. 2.4.

Таблица 2.4

<table>
<thead>
<tr>
<th>Последняя цифра шифра</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>(e)</td>
<td>5,3</td>
<td>4,8</td>
<td>5,2</td>
<td>4,1</td>
<td>4,8</td>
<td>5,0</td>
<td>5,2</td>
<td>4,1</td>
<td>5,0</td>
<td>5,3</td>
</tr>
<tr>
<td>(E)</td>
<td>7,5</td>
<td>7,5</td>
<td>6,5</td>
<td>5,3</td>
<td>5,8</td>
<td>7,5</td>
<td>7,5</td>
<td>6,5</td>
<td>5,3</td>
<td>7,5</td>
</tr>
<tr>
<td>(R)</td>
<td>4000</td>
<td>300</td>
<td>350</td>
<td>4000</td>
<td>200</td>
<td>300</td>
<td>200</td>
<td>3500</td>
<td>250</td>
<td>250</td>
</tr>
<tr>
<td>(d)</td>
<td>100</td>
<td>15</td>
<td>20</td>
<td>50</td>
<td>0</td>
<td>20</td>
<td>25</td>
<td>30</td>
<td>0</td>
<td>20</td>
</tr>
</tbody>
</table>

Контрольные вопросы

1. В каких случаях производится параллельное смещение одного из путей?
2. Какие значения радиусов применяются на скоростных линиях?
3. Может ли прямая вставка между концами обращенных в разные стороны кривых равняться нулю?
4. Из каких элементов пути состоит параллельное смещение?

Практическая работа № 5
Расстановка предельных столбиков и сигналов

Предельные столбики устанавливаются после стрелочного перевода в том месте, где расстояние между осями сходящихся путей составляет 4,1 м. При наличии кривой габаритное расстояние увеличивается на \(\Delta \). Варианты установки предельных столбиков представлены на рис. 2.8.

Рис. 2.8. Схемы установки предельного столбика
Для определения расстояния до предельного столбика имеются готовые таблицы, в которых в зависимости от марки крестовины, ширины междупутья и радиуса за крестовинной кривой принимается расстояние от центра стрелочного перевода до предельного столбика.

Светофоры устанавливаются с правой стороны по ходу движения.

Входные светофоры, разрешающие въезд на станцию, устанавливаются на расстоянии 300 м при электрической тяге и 50 м — при тепловозной, считая от первого стрелочного перевода, если он противошерстный и от предельного столбика, если первый стрелочный перевод пошерстный.

Выходные светофоры, разрешающие выход с приемо-отправочных путей на перегон после остановки, устанавливаются по трем вариантам:

Вариант 1. При установке сигнала перед пошерстным стрелочным переводом (рис. 2.9), если светофор, разрешающий выход с пути, а также предельный столбик для данного пути расположены в одном междупутье, светофор устанавливается по требованию габарита приближения строений в зависимости от марки крестовины, ширины междупутья, радиуса сопрягающей кривой. Для определения расстояния до сигнала имеются готовые таблицы \(L_C = L_{\text{макс}} \).

\[\text{Рис. 2.9. Схема установки выходного светофора по 1 варианту} \]

Вариант 2. При установке сигнала перед пошерстным стрелочным переводом (рис. 2.10), если светофор, разрешающий выход с пути, а также предельный столбик для данного пути расположены в разных междупутьях, светофор устанавливается за 3,5 м от предельного столбика в створе с изолирующим стыком, а расстояние от центра перевода до предельного столбика составляет \(L_C = L_{\text{пр.ст}} + 3,5 \text{ м} \).

\[\text{Рис. 2.10. Схема установки выходного светофора по 2 варианту} \]

Вариант 3. При установке сигнала перед противошерстным стрелочным переводом (рис. 2.11) сигнал устанавливается перед рамным рельсом (на расстоянии \(a \) от центра перевода) \(L_C = a \).
В практической работе 5 при заданных величинах (марка крестовины, расстояние между осями путей и радиус сопрягающей кривой), используя рис. 2.12, необходимо определить расстояние до предельных столбиков и выходных сигналов.

Условия для решения задачи представлены в табл. 2.5.

<table>
<thead>
<tr>
<th>Последняя цифра шифра</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Номер схемы (Прил. В)</td>
<td>8</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>10</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>Тип рельсов</td>
<td>P50</td>
<td>P65</td>
<td>P50</td>
<td>P65</td>
<td>P50</td>
<td>P65</td>
<td>P50</td>
<td>P65</td>
<td>P50</td>
<td>P65</td>
</tr>
<tr>
<td>Марка крестовины</td>
<td>1/9</td>
<td>1/11</td>
<td>1/11</td>
<td>1/9</td>
<td>1/11</td>
<td>1/9</td>
<td>1/9</td>
<td>1/9</td>
<td>1/11</td>
<td>1/9</td>
</tr>
<tr>
<td>R</td>
<td>200</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>400</td>
<td>300</td>
<td>200</td>
<td>300</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>e</td>
<td>5,3</td>
<td>6,5</td>
<td>4,8</td>
<td>5,3</td>
<td>6,5</td>
<td>4,8</td>
<td>4,8</td>
<td>6,5</td>
<td>5,3</td>
<td>7,5</td>
</tr>
</tbody>
</table>

Контрольные вопросы
1. Для чего устанавливают предельные столбики?
2. Где располагаются предельные столбики?
3. На каком расстоянии устанавливаются входные светофоры?
4. Три варианта расстановки выходных светофоров.
Практическая работа № 6
Определение полезной и полной длины станционных путей

При проектировании станций различают полную, полезную и строительную длину станционных путей.

Полной длиной сквозного пути называется расстояние между остряками крайних стрелочных переводов, ведущих на него. Полной длиной тупикового пути называется расстояние между остряком стрелки и упором.

Полезной длиной называется часть полной длины пути, в пределах которой может устанавливалась подвижной состав, не нарушая безопасности движения по соседнему пути. Границами полезной длины могут быть изолированные стыки, остряки стрелочных переводов предельные столбики, светофоры и упоры тупиковых путей (рис. 2.13). Полезная длина путей является одним из важнейших параметров при проектировании станций. На магистральных железных дорогах общей сети для приёма и отправления грузовых поездов установлены унифицированные стандартные нормы полезной длины 850, 1 050, (1 250 на существующих раздельных пунктах) и 1 700, 2 100 м.

Строительной длиной пути называется часть полной длины за вычетом суммарной длины стрелочных переводов, уложенных на этом пути. Строительная длина пути необходима при определении капитальных и эксплуатационных затрат при сооружении станции.

В практической работе 6 необходимо на схеме станции отметить полезную и полную длину станционных путей.

Рис. 2.13. Схема станции с указанием полезной и полной длины путей

Условия для решения задач представлены в табл. 2.6.

<table>
<thead>
<tr>
<th>Таблица 2.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Данные для решения задач</td>
</tr>
<tr>
<td>Последняя цифра шифра</td>
</tr>
<tr>
<td>Номер схемы (Прил. В)</td>
</tr>
</tbody>
</table>
Контрольные вопросы

1. Определение полезной длины приемо-отправочного пути.
2. Основные стандартные значения полезной длины путей для приема грузовых поездов.
3. Определение полезной длины тупикового пути.
4. Что такое полная длина пути?

Практическая работа № 7
Стрелочные улицы

Стрелочные улицы образуются при последовательной укладке стрелочных переводов на пути для примыкания группы параллельных путей. Они дают возможность принимать поезд с главных на любой путь парка станции, отправлять поезд с любого пути парка на главный, а также переставлять вагоны с одного пути на другой через вытяжной путь станций.

От длины стрелочных улиц часто зависит необходимая длина площадки станции и строительные затраты.

Стрелочные улицы бывают:
1. Под углом крестовины к основному пути, это простейшая стрелочная улица (рис. 2.14).

Недостатком ее является значительная растянутость при большом количестве путей, что приводит к неравномерным длинам путей и увеличению стационарной площадки.

Расстояние между центрами стрелочных переводов 1 и 2 \(L_{1-2} \) определяется по формуле

\[
L_{1-2} = b + d1 + a = \frac{e}{\sin \alpha},
\]

\[
d1 = \frac{e}{\sin \alpha} - b - a.
\]

Прямая вставка перед кривой вершины угла \(B_5 \) и её необходимые параметры – тангенс \(T \) и длина \(K \) – находятся по формулам

\[
f_s = L_1 - b - T_s, \quad T_s = R \cdot \tan \frac{\alpha}{2},
\]

\[
L_1 = \frac{e}{\sin \alpha}, \quad K = \frac{\pi \cdot R \cdot \alpha}{180}.
\]
2. Простые, расположенные на основном пути (рис. 2.15).
Недостатком схемы является то, что основной путь сильно загружен, это влечет ускоренный износ стрелочных переводов.

3. Под двойным углом крестовины к основному пути (рис. 2.16).
Основные формулы расчета данной улицы приведены ниже.

\[L_{1,2} = b + d + a \] – по схеме укладки № 3 (Прил. Е),

\[L_{2,3} = c = \frac{e}{\sin \alpha} \] – по схеме укладки № 4 (Прил. Е),

\[T_6 = R \cdot \tan \frac{2\alpha}{2}, \quad K_6 = \frac{\pi R \cdot 2\alpha}{180}. \]

4. Сокращенная стрелочная улица с дополнительной укладкой кривой после первого перевода (рис. 2.17).

Сокращенные стрелочные улицы значительно уменьшают длину горловины. Сокращенные стрелочные улицы с дополнительной укладкой кривой применяются обычно, когда первое междупутье больше чем другое.

Рис. 2.17. Сокращенная стрелочная улица

Необходимо определить значение угла \(\beta \), тогда тангенсы кривых

\[T_1 = R \cdot \tan \frac{\beta - \alpha}{2}, \quad T_4 = R \cdot \tan \frac{\beta}{2}. \]

5. Комбинированные стрелочные улицы (рис. 2.18). Они возникают при большом числе путей в парках. Чаше всего комбинированные стрелочные улицы представляют собой различные вариации простых улиц с увеличением угла наклона к основному пути.

Рис. 2.18. Комбинированные стрелочные улицы
Формулы для расчета данной улицы приведены ниже

\[L_{1-4} = b + d + a \] — схема № 3 (Прил. Е),

\[L_{2-3} = \frac{e}{\sin \alpha} \] — схема № 4 (Прил. Е),

\[L_{1-2} = \frac{e}{\sin \alpha} \] — схема № 4 (Прил. Е),

\[T_6 = R \cdot \tan \frac{2 \alpha}{2}. \]

6. **Веерные улицы** (рис. 2.19). Применяются в тех случаях, когда из парка надо устроить выход на основной путь, расположенный к парку под углом более \(2\alpha \), а также для крайних пучков больших парков, имеющих ось в виде ломаной линии, угол направления её меняется после прыкания каждого следующего пути.

В них каждый следующий путь расположен под углом \(\alpha \) к предыдущему. Такая конструкция даёт возможность осуществить на коротком расстоянии значительный поворот в направлении пути.

![Рис. 2.19. Правосторонняя веерная улица](image)

Веерные стрелочные улицы бывают концентрические и неконцентрические.
Кривые участки первых улиц концентричны и начинаются в одном створе. Радиус кривой второго пути принимают не менее 300 м, для каждого последующего радиус увеличивается на величину \(e \).

При укладке неконцентрической улицы с постоянным радиусом кривых междупутья в голове парка уширяются, вызывая увеличение объёма земляных работ.

Недостатком веерной концентрической улицы является изменение вставки \(d \) и, как следствие, появление рубок переменной длины при попутной укладке переводов.
7. Пучкообразные стрелочные улицы (рис. 2.20) применяются в горловинах сортировочных парков при наличии горок, укладываются из симметричных стрелочных переводов марки 1/6.

При этом горловины пучков имеют наименьшую длину по сравнению с другими видами улиц.

В практических работах в задаче преподавателем стрелочной улице необходимо определить
- прямые вставки f;
- значения тангенсов T;
- длины кривых K;
- длины съездов L;
- рассчитать координаты центров стрелочных переводов $ ЦП$, вершины углов BY;
- произвести масштабную накладку стрелочной улицы.

Контрольные вопросы

1. Назначение стрелочных улиц.
2. Конструкции стрелочных улиц, достоинства и недостатки той или иной улицы.
Практическая работа № 8

Координирование элементов стрелочной горловины станции

При расчете стрелочных улиц обычно известны марка стрелочного перевода, минимальное расстояние от центра перевода до начала кривой \(b_1 \), расстояния между осями путей \(e \), радиус \(R \) сопрягающей кривой.

Определяют тангенсы \(T \) и длины кривых \(K \), координаты вершин углов \((BV) \) и центров стрелочных переводов \((ЦП) \), проверяется достаточность вставки \(f \).

Координаты вписываются в горизонтальные графы внизу плана стрелочной улицы или в специальную ведомость координат. Подсчеты ведут с точностью до 0,001 м, результат округляют до 0,01 м.

При сооружении станций, парков, стрелочных улиц или горловин производят разбивку элементов путевого развития на местности. Для этого необходимо знать координаты центров стрелочных переводов, предельных столбиков, сигналов, упоров тупиков, вершины углов поворота кривых. В проектах координаты устанавливают по таблицам тригонометрических функций, учитывая технические требования к взаимному расположению стрелочных переводов и их размеры. Для расчета координат предварительно устанавливают нормативные расстояния относительно смежных стрелочных переводов, а также расстояния между осями путей.

В практической работе 8 по заданной преподавателем схеме (рис. 2.21) горловины станции и исходных данных необходимо рассчитать координаты всех стрелочных переводов и вершины углов поворота, выполнить на отдельном листе масштабную накладку горловины в масштабе 1:2 000 м, нанести координаты характерных точек (вершины углов поворота, центры стрелочных переводов).

Условия для решения задач представлены в табл. 2.7

<table>
<thead>
<tr>
<th>Таблица 2.7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Данные для решения задач</td>
</tr>
<tr>
<td>Последняя цифра шифра</td>
</tr>
<tr>
<td>Номер схемы (Прил. И)</td>
</tr>
<tr>
<td>Значение (e_1)</td>
</tr>
</tbody>
</table>

Значение \(e = 5,3 \) м.
Рис. 2.21. Схема стрелочной горловины
Пример расчета стрелочной горловины
Дано:
P50 м; 1/9; R — 200 м;
e — указаны на схеме стрелочной горловины м;
а = 6°20’25”;
d = 6,25 м;
b = 15,812 м;
a = 15,227 м.
Найти координаты центров стрелочных переводов, вершин углов.
За начало координат принимаем ЦП 4. Тогда расчет будет выглядеть следующим образом.

ЦП 4: \[X_4 = 0, \]
\[Y_4 = 0. \]

ЦП 6: \[X_6 = a + d + a, \]
\[Y_6 = 0. \]

ЦП 8: \[X_8 = X_6 + b + d + a, \]
\[Y_8 = 0. \]

ЦП 10: \[X_{10} = X_6 + (b + d + a) \cdot \cos \alpha, \quad X_{10} = 73,99, \]
\[Y_{10} = Y_6 + (b + d + a) \cdot \sin \alpha, \quad Y_{10} = 4,12. \]

ЦП 12: \[X_{12} = X_{10} + (b + d + a) \cdot \cos \alpha, \quad X_{12} = 109,6, \]
\[Y_{12} = Y_{10} + (b + d + a) \cdot \sin \alpha, \quad Y_{12} = 8,1. \]

ЦП 14: \[X_{14} = X_{10} + L_{10-14} \cdot \cos 2\alpha, \quad X_{14} = 110,4, \]
\[Y_{14} = Y_{10} + L_{10-14} \cdot \sin 2\alpha, \quad Y_{14} = 12,3. \]

ЦП 16: \[X_{16} = X_8 + (b + p + b) \cdot \cos \alpha, \quad X_{16} = 121,69, \]
\[Y_{16} = Y_8 - (b + p + b) \cdot \sin \alpha, \quad Y_{16} = -5,3. \]

ЦП 2: \[X_2 = X_4 - (b + p + b) \cdot \cos \alpha, \quad X_2 = -47,7, \]
\[Y_2 = Y_4 - (b + p + b) \cdot \sin \alpha, \quad Y_2 = -5,3. \]

БУ 1: \[X_1 = X_{12} + (b + f_1 + T_1) \cdot \cos \alpha, \quad X_1 = 157,3, \]
\[Y_1 = Y_{12} + (b + f_1 + T_1) \cdot \sin \alpha, \quad Y_1 = 13,4. \]

\[T_1 = R \cdot \tan \frac{\alpha}{2}, \]
\[f_1 = \frac{e}{\sin \alpha} - b - T_1. \]
BY2: \[X_2 = X_{14} + (b + f_2 + T_2) \cdot \cos \alpha, \quad X_2 = 167.71, \]
\[Y_2 = Y_{14} + (b + f_2 + T_2) \cdot \sin \alpha, \quad Y_2 = 18.7. \]
\[T_2 = R \cdot \tan \frac{\alpha}{2}, \]
\[f_2 = \frac{e_x}{\sin \alpha} - b - T_2, \]
\[e_x = \sum e - Y_{14}. \]

BY3: \[X_3 = X_{14} + (b + f_3 + T_3) \cdot \cos 2\alpha, \quad X_3 = 162.13, \]
\[Y_3 = Y_{14} + (b + f_3 + T_3) \cdot \sin 2\alpha, \quad Y_3 = 18.7. \]
\[T_3 = R \cdot \tan \frac{2\alpha}{2}, \]
\[f_3 = \frac{e_x}{\sin 2\alpha} - b - T_3, \]
\[e_x = \sum e - Y_{14}. \]
ЗАКЛЮЧЕНИЕ

Железнодорожные линии сооружают для освоения новых районов и их природных богатств, разгрузки существующих грузонапряженных линий, сокращения пути и времени следования пассажирских и грузовых поездов. Станции и узлы представляют собой сложный комплекс устройств, где практически сосредоточены почти все подразделения железнодорожного транспорта, оснащенные новейшей техникой, комплексной механизацией и автоматизацией перевозочного процесса. Общая эксплуатационная длина сети железных дорог РФ составляет около 150 тыс. км, что составляет 12 % от протяженности железных дорог мира, при этом российский железнодорожный транспорт выполняет 53 % перевозок от мирового железнодорожного грузооборота и 25 % – от мирового объема пассажирского фрахта.

Железнодорожные станции и узлы в транспортном процессе занимают ведущее место: они обеспечивают приём, отправление и пропуск поездов. На станциях и терминалах выполняются основные пассажирские и грузовые операции, происходит переработка вагонов, т. е. именно здесь расформировываются и формируются поезда, ремонтируются подвижные составы, экипируются локомотивы и т. д. Кроме того, узлы и крупные станции являются стыковыми пунктами в единой транспортной системе страны для различных железных дорог и других видов транспорта.

Всего в сети дорог насчитывается более 10 тыс. различных железнодорожных станций, основу их составляет путевое развитие: земляное полотно, искусственные сооружения, верхнее строение пути, включающее балласт, рельсы, шпалы, стрелочные переводы и др., поэтому изучение стационарного хозяйства невозможно без знания устройств железнодорожного пути. Работа по организации перевозок, управленчно движением, реконструкции и строительству новых магистралей требует глубокого знания всей структуры железнодорожных дорог, в первую очередь, устройств пути и станций. Настоящее издание направлено на оказание необходимой помощи студентам.

Пособие может быть использовано не только при выполнении практических работ по изучаемым дисциплинам, но и для решения основных задач, возникающих при прокладке новой железнодорожных линий, проектировании раздельных пунктов.
БИБЛИОГРАФИЧЕСКИЙ СПИСОК

Схемы промежуточных станций

Схема 1

Схема 2

Схема 3

Схема 4

Схема 5
Окончание прил. Б

Схема 6

Схема 7

Схема 8

Схема 9

Схема 10
<table>
<thead>
<tr>
<th>Марка крестовины, (tg \alpha)</th>
<th>Угол крестовины, (\alpha)</th>
<th>От переднего стыка рамных рельсов до начала острия, (m)</th>
<th>От начала острия до центра перевод, (a_0)</th>
<th>От переднего стыка рамных рельсов до математического центра крестовины, (a)</th>
<th>От центра перевода до математического центра крестовины, (b_0)</th>
<th>От центра перевода до торца крестовины, (b)</th>
<th>Полная длина перевода (L), м</th>
</tr>
</thead>
<tbody>
<tr>
<td>P65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/22</td>
<td>2°35’50”</td>
<td>5,03</td>
<td>26,92</td>
<td>31,95</td>
<td>33,53</td>
<td>5,06</td>
<td>38,59</td>
</tr>
<tr>
<td>1/18</td>
<td>3°10’12”</td>
<td>3,83</td>
<td>21,79</td>
<td>25,62</td>
<td>27,46</td>
<td>4,42</td>
<td>31,89</td>
</tr>
<tr>
<td>1/11</td>
<td>5°11’40”</td>
<td>2,76</td>
<td>11,29</td>
<td>14,06</td>
<td>16,75</td>
<td>2,55</td>
<td>19,30</td>
</tr>
<tr>
<td>1/9</td>
<td>6°20’25”</td>
<td>2,76</td>
<td>12,45</td>
<td>15,22</td>
<td>13,72</td>
<td>2,09</td>
<td>15,81</td>
</tr>
<tr>
<td>P50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/18</td>
<td>3°10’12”</td>
<td>3,83</td>
<td>21,79</td>
<td>25,62</td>
<td>27,46</td>
<td>4,42</td>
<td>31,89</td>
</tr>
<tr>
<td>1/11</td>
<td>5°11’40”</td>
<td>4,32</td>
<td>10,14</td>
<td>14,47</td>
<td>16,75</td>
<td>2,30</td>
<td>19,05</td>
</tr>
<tr>
<td>1/9</td>
<td>6°20’25”</td>
<td>4,32</td>
<td>11,13</td>
<td>15,45</td>
<td>13,72</td>
<td>1,88</td>
<td>15,60</td>
</tr>
</tbody>
</table>
Тригонометрические функции углов, кратных углам крестовин

<table>
<thead>
<tr>
<th>Марка крестовины</th>
<th>Число стрелочных углов</th>
<th>Угол поворота</th>
<th>θ</th>
<th>,</th>
<th>,</th>
<th>$\sin\theta$</th>
<th>$\cos\theta$</th>
<th>$\tan\theta$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/22</td>
<td>1</td>
<td>2</td>
<td>35</td>
<td>50</td>
<td></td>
<td>0,047251</td>
<td>0,998883</td>
<td>0,047304</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>3</td>
<td>10</td>
<td>12,5</td>
<td>0,055301</td>
<td>0,998470</td>
<td>0,055386</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,5</td>
<td>2</td>
<td>35</td>
<td>50</td>
<td>0,045315</td>
<td>0,998973</td>
<td>0,045361</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>5</td>
<td>11</td>
<td>40</td>
<td>0,090536</td>
<td>0,995893</td>
<td>0,090909</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,5</td>
<td>7</td>
<td>47</td>
<td>30</td>
<td>0,135571</td>
<td>0,990768</td>
<td>0,136835</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>10</td>
<td>23</td>
<td>20</td>
<td>0,180328</td>
<td>0,983606</td>
<td>0,183334</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>15</td>
<td>35</td>
<td>00</td>
<td>0,268640</td>
<td>0,963241</td>
<td>0,278891</td>
</tr>
<tr>
<td>1/11</td>
<td>0,5</td>
<td>3</td>
<td>10</td>
<td>12,5</td>
<td></td>
<td>0,055301</td>
<td>0,998470</td>
<td>0,055386</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>6</td>
<td>20</td>
<td>25</td>
<td>0,110433</td>
<td>0,993884</td>
<td>0,111113</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,5</td>
<td>9</td>
<td>30</td>
<td>37,5</td>
<td>0,165227</td>
<td>0,986256</td>
<td>0,167529</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>12</td>
<td>40</td>
<td>50</td>
<td>0,219515</td>
<td>0,975609</td>
<td>0,225003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2,5</td>
<td>15</td>
<td>51</td>
<td>2,5</td>
<td>0,273132</td>
<td>0,961977</td>
<td>0,283927</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>19</td>
<td>01</td>
<td>15</td>
<td>0,325912</td>
<td>0,945400</td>
<td>0,344734</td>
</tr>
</tbody>
</table>
Приложение Е

Минимальные величины прямых вставок d при укладке стрелочных переводов на новых и переустраиваемых станциях, м

<table>
<thead>
<tr>
<th>№ п/п</th>
<th>Схема укладки стрелок</th>
<th>Категория путей</th>
<th>Условия проектирования</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>главные</td>
<td>приёмно-отправочные</td>
</tr>
<tr>
<td></td>
<td></td>
<td>нормальные</td>
<td>стесенные</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>12,5/25</td>
<td>6,25</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>12,5/25</td>
<td>6,25</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>12,5/25</td>
<td>6,25</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>По расчету</td>
<td>По расчету, но не менее</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>По расчету</td>
<td>По расчету, но не менее</td>
</tr>
</tbody>
</table>

Примечания

1. В числителе при движении поездов со скоростями до 140 км/ч, в знаменателе со скоростями 141—160 км/ч.
2. В схеме 2 на приёмно-отправочных путях частично переустраиваемых станций допускается $d = 0$, если расстояние между остряками смежных стрелочных переводов равно или более 8,66 м.
3. При укладке стрелочных переводов из рельсов разных типов вставка предусматривается не менее 12,5 м.
<table>
<thead>
<tr>
<th>Междупутье, м</th>
<th>Марки крестовины</th>
<th>1/22–1/18</th>
<th>1/11</th>
<th>1/9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Радиусы закрестовинных кривых, м</td>
<td>1500</td>
<td>1000</td>
<td>300</td>
</tr>
<tr>
<td>4,8–5,0</td>
<td>97,61</td>
<td>78,40</td>
<td>53,06</td>
<td>53,06</td>
</tr>
<tr>
<td>5,1</td>
<td>97,61</td>
<td>78,40</td>
<td>53,06</td>
<td>53,06</td>
</tr>
<tr>
<td>5,2</td>
<td>97,61</td>
<td>78,40</td>
<td>46,81</td>
<td>53,06</td>
</tr>
<tr>
<td>5,3</td>
<td>97,61</td>
<td>78,40</td>
<td>46,81</td>
<td>53,06</td>
</tr>
<tr>
<td>5,4</td>
<td>91,36</td>
<td>78,40</td>
<td>46,81</td>
<td>53,06</td>
</tr>
<tr>
<td>5,5–5,8</td>
<td>91,36</td>
<td>78,40</td>
<td>46,81</td>
<td>46,81</td>
</tr>
<tr>
<td>5,9–6,0</td>
<td>91,36</td>
<td>78,40</td>
<td>46,81</td>
<td>46,81</td>
</tr>
<tr>
<td>6,1–6,2</td>
<td>91,36</td>
<td>78,40</td>
<td>46,81</td>
<td>46,81</td>
</tr>
<tr>
<td>6,3</td>
<td>91,36</td>
<td>78,40</td>
<td>46,81</td>
<td>46,81</td>
</tr>
<tr>
<td>6,4–6,5</td>
<td>91,36</td>
<td>78,40</td>
<td>46,81</td>
<td>46,81</td>
</tr>
<tr>
<td>6,6–6,7</td>
<td>91,36</td>
<td>78,40</td>
<td>46,81</td>
<td>46,81</td>
</tr>
<tr>
<td>6,8–6,9</td>
<td>91,36</td>
<td>78,40</td>
<td>46,81</td>
<td>46,81</td>
</tr>
<tr>
<td>7,0</td>
<td>91,36</td>
<td>78,40</td>
<td>46,81</td>
<td>46,81</td>
</tr>
<tr>
<td>7,1–7,4</td>
<td>91,36</td>
<td>78,40</td>
<td>46,81</td>
<td>46,81</td>
</tr>
<tr>
<td>7,5 и более</td>
<td>91,36</td>
<td>78,40</td>
<td>46,81</td>
<td>46,81</td>
</tr>
</tbody>
</table>
Схемы стрелочных горловин

Схема 1

Схема 2

Схема 3
Схема 7

Схема 8

Схема 9

Схема 10
Классификация железнодорожных линий по категориям

<table>
<thead>
<tr>
<th>Категория железнодорожных дорог</th>
<th>Назначение железнодорожных линий</th>
<th>Расчетная годовая приведенная грузонапряженность (нетто в грузовом направлении) на 10-й год эксплуатации, млн ткм·км (включительно)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Скоростные</td>
<td>Железнодорожные магистральные линии для движения пассажирских поездов со скоростью св. 160 до 200 км/ч</td>
<td></td>
</tr>
<tr>
<td>Особо грузонапряженные</td>
<td>Железнодорожные магистральные линии для большого объема грузовых перевозок</td>
<td>Св. 50</td>
</tr>
<tr>
<td>I</td>
<td>Железнодорожные магистральные линии</td>
<td>Св. 30 до 50</td>
</tr>
<tr>
<td>II</td>
<td>То же</td>
<td>Св. 15 до 30</td>
</tr>
<tr>
<td>III</td>
<td>То же</td>
<td>Св. 8 до 15</td>
</tr>
<tr>
<td>IV</td>
<td>Железнодорожные линии</td>
<td>До 8</td>
</tr>
<tr>
<td>–</td>
<td>Внутристанционные соединительные и подъездные пути</td>
<td>Независимо от грузонапряженности</td>
</tr>
</tbody>
</table>

Примечания

1. Приведенная грузонапряженность определяется с учетом числа и массы пассажирских поездов.

3. Подъездные и внутристанционные соединительные пути при максимальной скорости движения поездов св. 80 км/ч должны удовлетворять нормам железнодорожных линий III категории.

4. К внутристанционным соединительным путям относятся пути, ведущие к контейнерным площадкам, базам, сортировочным платформам, пунктам очистки, промывки, дезинфекции вагонов, ремонта подвижного состава и производства других технологических операций.
Нормы для проектирования верхнего строения путей

<table>
<thead>
<tr>
<th>Показатель</th>
<th>Мощность верхнего строения пути на железнодорожных линиях различных категорий</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Скоростные</td>
</tr>
<tr>
<td>Тип рельсов</td>
<td>P75-P65</td>
</tr>
<tr>
<td>Род шпал</td>
<td>Деревянные I типа или железобетонные</td>
</tr>
<tr>
<td>Число шпал на 1 км пути, шт.:</td>
<td></td>
</tr>
<tr>
<td>на прямых и кривых радиусом 1200 и более</td>
<td>2000</td>
</tr>
<tr>
<td>Толщина балластного слоя под шпалой, см:</td>
<td></td>
</tr>
<tr>
<td>щебеночный или асбестовый (числитель) на балластной подушке из песка, удовлетворяющего требованиям к балластным материалам (знаменатель) на пути с деревянными шпалами,</td>
<td>30/20</td>
</tr>
<tr>
<td>то же, с железобетонными шпалами: асбестовый на пути с деревянными шпалами,</td>
<td>35/20</td>
</tr>
<tr>
<td>то же с железобетонными шпалами</td>
<td>–</td>
</tr>
<tr>
<td>гравийно-песчаный</td>
<td>–</td>
</tr>
</tbody>
</table>

П р и м е ч а н и я
1. Двухслойную балластную призму при использовании щебеночного или асбестового балласта следует укладывать на земляном полотне из глинистых грунтов, песков мелких и пылеватых, в том числе при устройстве защитного слоя в верхней части земляного полотна; на земляном полотне из скальных, крупнообломочных грунтов и песков (за исключением мелких и пылеватых) щебень и асбестовый балласт следует укладывать в один слой, без песчаной балластной подушки, и толщина балластного слоя на пути с деревянными шпалами в этом случае должна быть не менее 30 см, в том числе при использовании других допускаемых видов балласта, а на пути с железобетонными шпалами – не менее 35 см.
2. Если подушка устраивается из гравия, толщину слоя щебня или асбеста следует уменьшить на 5 см без уменьшения общей толщины балластного слоя.
3. При преобладании в основании земляного полотна просадочных и сжимаемых грунтов следует укладывать звеньевой путь на гравийно-песчаном и гравийном балласте. Постановку пути на щебеночный балласт и укладку бестыкового пути надлежит предусматривать после полной стабилизации земляного полотна.
4. На линиях со скоростью движения более 140 км/ч необходимо использовать только щебеночный балласт.
5. Железобетонные шпалы следует применять в бестыковом пути. Допускается по согласованию с железнодорожной администрацией применение железобетонных шпал в звеньевом пути на линиях IV категории, внутриузловых, внутристанционных, соединительных и подходных путях.
6. На пескозасыпанных участках следует укладывать термически упроченные рельсы не легче Р65 на деревянных шпалах.
Марки крестовин стрелочных переводов, применяемые на магистральных железнодорожных линиях

<table>
<thead>
<tr>
<th>Назначение стрелочных переводов</th>
<th>Марки крестовин стрелочных переводов, не круче</th>
</tr>
</thead>
<tbody>
<tr>
<td>Для безостановочного пропуска поездов, при разветвлении главного пути и в путепроводных развилках</td>
<td>1/18; 1/22 и в обоснованных случаях 1/11</td>
</tr>
<tr>
<td>Для приема и отправления пассажирских поездов по боковому пути</td>
<td>1/11; перекрестные переводы и одиночные, являющиеся продолжением перекрестных, – 1/9</td>
</tr>
<tr>
<td>Для приема и отправления грузовых поездов по боковому пути</td>
<td>1/9; симметричные 1/6</td>
</tr>
<tr>
<td>На соединительных и прочих станционных путях</td>
<td>1/9; симметричные 1/6</td>
</tr>
</tbody>
</table>

Примечание
Применение стрелочных переводов марки 1/18 и 1/22, а также перекрестных переводов, глухих пересечений и одиночных симметричных переводов допускается по согласованию с железнодорожной администрацией.
Учебное издание

Дудакова Анастасия Владимировна
Ганеева Ольга Павловна

Путь, железнодорожные станции и узлы

Учебное пособие

Редактор: Л. В. Докукина
Компьютерный набор: А. В. Дудакова

Формат 60х84 1/16. Печать офсетная.
Усл. печ. л. 4,75. Уч.-изд. л. 5,11.
План 2017 г. Тираж 100 экз. Заказ

Типография ИрГУПС, г. Иркутск, ул. Чернышевского, 15