А. Л. ЧЕРЕПАНОВА

ИНФОРМАТИКА

ЛАБОРАТОРНЫЙ ПРАКТИКУМ

Иркутск 2015
Рекомендовано к изданию редакционным советом ИрГУПС

Рецензенты:
С. И. Михаэлис, к. п. н., доцент кафедры «Информационные системы и защита информации» ИрГУПС;
Н. А. Пегасова, к. п. н., доцент кафедры информатики и методики обучения информатике ИГУ;
Б. И. Китов, д. т. н., профессор, зав. кафедрой «Механика и приборостроение» ИрГУПС

Черепанова А. Л.

Лабораторный практикум включает 12 лабораторных работ по дисциплине «Информатика» для направления подготовки «Приборостроение», профиля «Приборы и методы контроля качества и диагностики». В работах подробно описаны шаги выполнения заданий, а также представлены необходимые изображения для упрощения восприятия учебного материала. В работах выделены цели выполнения работы; задания, которые необходимо сделать в процессе работы; требования к защите работ, контрольные вопросы. Лабораторный практикум можно использовать при обучении студентов различных технических направлений подготовки.
ОГЛАВЛЕНИЕ

ПРЕДИСЛОВИЕ .. 4
1. Компьютерная клавиатура. Назначение клавиш ... 5
2. Работа в операционной системе Windows .. 7
3. Основы работы в файловых менеджерах .. 9
4. Работа в ОС Windows в командном режиме .. 20
5. Вычисление функций в Excel .. 31
6. Создание таблиц. Вычисления в таблицах .. 41
7. Построение диаграмм .. 57
8. Работа со списками в Excel ... 57
9. Решение уравнений и систем уравнений средствами Excel 64
10. Вычисление значений функций в MathCAD ... 71
11. Построение графиков функций в MathCAD ... 80
12. Решение уравнений и систем уравнений в MathCAD ... 889
13. Создание схем в редакторе деловой и инженерной графики MS Visio 94

ПРИЛОЖЕНИЕ .. 110

Библиографический список .. 114
ПРЕДИСЛОВИЕ

Изучение дисциплины «Информатика» включает обязательное выполнение лабораторных работ. Представленные работы ориентированы на практическое освоение информационных технологий для решения типовых общеунаучных задач в своей профессиональной деятельности (научно-исследовательской, проектно-конструкторской, производственно-технологической, организационно-управленческой).

Навыки, полученные в результате выполнения лабораторных работ, являются основой для дальнейшего изучения учебных дисциплин, связанных с использованием компьютера, по направлению подготовки «Приборостроение», а также инструментом эффективной работы на других учебных дисциплинах.

Выполнение лабораторных работ направлено на формирование следующих компетенций:
✓ способность понимать сущность и значение информации в развитии современного информационного общества;
✓ способность применять основные методы, способы и средства получения, хранения, переработки информации, навыки работы с компьютером как средством управления информацией;
✓ способность обрабатывать и представлять данные экспериментальных исследований;
✓ способность владеть методами информационных технологий, соблюдать основные требования информационной безопасности;
✓ способность к самоорганизации и самообразованию.

В практикум включены лабораторные работы, советующие рабочей программе по дисциплине «Информатика» для направления подготовки «Приборостроение» по профилю «Приборы и методы контроля качества и диагностики».

В практикуме часть работ ориентирована на формирование самостоятельности при обучении, что является необходимой составляющей любой учебной деятельности.
1. КОМПЬЮТЕРНАЯ КЛАВИАТУРА.
НАЗНАЧЕНИЕ КЛАВИШ

Цель работы: повторить назначение основных клавиш/ комбинаций клавиш для работы за компьютером; научиться применять полученные знания на практике.

Для выполнения заданий ознакомьтесь с содержимым файлов «Клавиатура_1.pdf», «Клавиатура_2.pdf», «Буфер_обмена.pdf».

Задание к лабораторной работе:

1. Определить назначение указанных в списке клавиш/ комбинаций клавиши:

 Ctrl+C — Page Up, Page Down, Home,
 Ctrl+V — End
 Ctrl+X — Enter, Esc
 Ctrl+Z — Shift
 Ctrl+Y — Alt+Tab
 Ctrl+A — Ctrl+Esc, Win
 Ctrl+Shift (2 назначения) — Print Screen
 Alt+Shift — Alt+Print Screen

2. Определить клавиши/ комбинации клавиш, используемые для выполнения действий:
 – удаления символа справа/слева от курсора;
 – удаления объекта файловой системы (файла, папки);
 – удаление объекта файловой системы без занесения в корзину;
 – вызова Диспетчера задач;
 – вызова Главного меню Windows;
 – вызова контекстного меню выделенного объекта;
 – открытия окна свойств выделенного объекта;
 – перевода дополнительной клавиатуры из режима ввода цифр в режим управления курсором;
 – перевода клавиатуры из режима вставки символа в режим замены символа;
 – переключения между окнами приложений;
 – обновления информации в окне;
 – фиксации ввода прописных букв;
 – закрытия активного окно приложения, окна документа приложения;
 – блокировки компьютера;
– копирования объекта файловой системы на одном диске методом перетаскивания;
– создания ярлыка при использовании метода перетаскивания.

3. Самостоятельно проверить работу клавиш на практике. При защите лабораторной работы обязательным является умение показывать применение клавиш/ комбинаций клавиш на практике.
4. Ответить на контрольные вопросы.

Клавиатура – клавишиное устройство управления персональным компьютером. Служит для ввода алфавитно-цифровых (знаковых) данных, а также команд управления. На рис. 1.1 представлена стандартная клавиатура.

Освоение клавиатуры позволяет делать работу на персональном компьютере более комфортной и правильной.

![Клавиатура](имя_изображения)

Рис. 1.1. Стандартная клавиатура

Контрольные вопросы

1. Определение клавиатуры.
2. Что такое буфер обмена?
3. Какие клавиши называются функциональными и почему?
4. Какие клавиши называют клавишами-модifikаторами и почему?
2. РАБОТА В ОПЕРАЦИОННОЙ СИСТЕМЕ WINDOWS

Цель работы: повторить основные приёмы работы в среде операционной системы Windows.
Материал для повторения находится в документе «Работа в среде операционной системы Windows. Методические указания.docx».

Для защиты лабораторной работы необходимо уметь:

1) создавать папки (3 способа);
2) создавать файлы различных приложений;
3) переименовывать файлы, папки;
4) сохранять документы;
5) при сохранении документов в окне сохранения создавать новую папку, в которую будет сохранён документ;
6) копировать/перемещать объекты файловой системы (файл, папка) различными способами:
 a. с помощью команд контекстного меню;
 b. используя приёмы управления с помощью мыши (перетаскивание, специальное перетаскивание);
 c. с помощью комбинации клавиш;
7) создавать ярлыки различными способами:
 a. с помощью команд контекстного меню;
 b. используя приёмы управления с помощью мыши (перетаскивание, специальное перетаскивание);
8) находить объект по его ярлыку;
9) удалять файлы и папки;
10) удалять файлы и папки без занесения в корзину;
11) восстанавливать объекты файловой системы из корзины;
12) открывать приложения/документы различными способами;
13) настраивать свойства папки;
14) выделять смежную группу файлов/папок;
15) выделять несмежную группу файлов/папок;
16) вызывать контекстное меню объектов;
17) применять приёмы управления с помощью мыши;
18) настраивать дополнительные параметры на вкладке Вид окна диалога Свойства папки;
19) осуществлять смену языка ввода;
20) изменять комбинации клавиш для смены языка ввода;
21) просматривать свойства файлов/папок;
22) осуществлять поиск файлов;
23) изменять вид отображения содержимого папки;
24) упорядочивать объекты по различным параметрам в окне папки;
25) располагать окна открытых приложений на экране различным способом (сверху вниз, слева направо и т. д.);
26) настраивать свойства панели задач и меню «Пуск»;
27) настраивать оформление Рабочего стола;
28) настраивать свойства мыши;
29) работать в Проводнике;
30) запускать Блокнот, Калькулятор;
31) включать/отключать Языковую панель и панель Быстрого запуска.

Контрольные вопросы

1. Что такое операционная система?
2. Дайте определения понятиям файл, папка.
3. Для чего нужно расширение файла?
4. Сформулируйте основное правило работы с объектами Windows.
5. Дайте представление об иерархической структуре подчиненности папок.
6. Где располагаются Панель задач, панель Быстрого запуска, Языковая панель?
7. Что называется приложением, документом, задачей в среде Windows?
8. Каково назначение Рабочего стола? Перечислите его основные объекты.
9. Объясните назначение Буфера обмена.
10. Расскажите о возможностях Панели управления для настройки среды Windows.
11. Что называется Контекстным меню?
12. Чем при сохранении команда «Сохранить» отличается от «Сохранить как»?
13. Как осуществить настройку часов, даты?
14. Перечислите элементы структуры окна папки.
3. ОСНОВЫ РАБОТЫ В ФАЙЛОВЫХ МЕНЕДЖЕРАХ

Цель работы: освоить принципы работы в файловых менеджерах.

Задание к лабораторной работе:
1. Ознакомиться с назначением файловых менеджеров и принципами работы.
2. Ознакомиться с требованиями к защите лабораторной работы.
3. Подготовить ответы на контрольные вопросы.

Назначение файловых менеджеров. Файловый менеджер предназначен для создания пользователю удобных условий работы и упрощения операций с файлами. Прежде всего, к таким операциям относятся создание, копирование, перемещение, удаление и переименование файлов (папок). Кроме основных функций большинство файловых менеджеров предоставляют и дополнительные функции, например групповые операции с файлами, быстрый просмотр содержимого файлов, упорядочивание (сортировка) объектов, средства сравнения файлов, папок и многое другое.

К файловым менеджерам относятся Norton Commander, Far Manager, Windows Commander, Total Commander, Free Commander и др. Менеджеры имеют текстовые и графические варианты интерфейса конечного пользователя. Например, FreeCommander имеет графический интерфейс (рис. 3.1.), а Far Manager – текстовый (рис. 3.2).

![Рис. 3.1. Free Commander](image1)

![Рис. 3.2. Far Manager](image2)

Принципы работы в файловых менеджерах. Free Commander имеет оконный интерфейс, принятый в операционной системе Windows, также он полностью настраиваем и поддерживает технологию DRAG & DROP.

На рис. 3.3 представлено окно файлового менеджера Free Commander.
Рис. 3.3. Окно файлового менеджера Free Commander

Для изменения настроек используется окно диалога Параметры. Для этого:

1. Откройте команды пункта меню Разное и выберите команду Параметры (рис. 3.4).

Рис. 3.4. Открытие команд пункта меню Разное

Откроется окно диалога Параметры (рис. 3.5).
2. В левой части окна выделите параметр Общие. Посмотрите, какие общие параметры можно настраивать. Обратите внимание, что вы можете выбрать язык интерфейса.

Панели инструментов, которые отображаются в окне файлового менеджера, можно убирать и добавлять, оставляя те, которые необходимы для работы. Для этого:

3. Откройте окно диалога Параметры. В левой части окна выберите строчку Панель инструментов, а в правой части можете установить/убрать нужные панели (рис. 3.6).

Рис. 3.5. Окно диалога Параметры

Рис. 3.6. Настройка панелей инструментов в окне Параметры
Рассмотрим подробнее панели работы с файлами (рис. 3.7).

На рис. 3.7 видно, что в оглавлении правой панели написано \textit{G:Информатика\LP_PPT}. Если на этой панели нажать кнопку перехода в корневой каталог, то в оглавлении будет написано \textit{G:}.

При нажатии на кнопку перехода на уровень выше будет открыта папка Информатика и в оглавлении панели будет указано \textit{G:\ Информатика}. Также, чтобы подняться на уровень вверх, можно на панели выделить верхнюю строку с двумя точками (рис. 3.8) и нажать клавишу Enter.

Если в окне файлового менеджера выведено две панели, то одна из них является активной (или текущей), а другая – неактивной. У активной панели подсвечен (выделен цветом) заголовок. На рис. 3.7. активной является правая панель.

«Горячими» называют клавиши, при нажатии которых независимо от текущего состояния программы немедленно выполняется строго опреде-
лённая, закреплённая за этими клавишами процедура обработки информации.
Комбинации клавиш («горячие» клавиши) для работы можно посмотреть, открыв пункт меню Справка → Сочетание клавиши. Также горячие клавиши отображаются при наведении указателя мыши на команду панели инструментов (рис. 3.9) или указаны рядом с названием команды пункта меню (рис. 3.10).

Рис. 3.9. Появление информации о горячих клавишах

Рис. 3.10. Указание «горячей» клавиши рядом с указанием команды

В основном в файловых менеджерах используются одинаковые клавиши/ комбинации клавиши для работы.
Ниже представлены основные комбинации клавиш, которые наиболее часто используются при выполнении работы с файлами и каталогами (папками), а также при управлении файловыми панелями.

TAB – сделать активной другую панель;
CTRL+R – обновить данные на панели;
CTRL+SHIFT+F1 – убрать левую панель;
CTRL+SHIFT+F2 – установить левую и правую панель одинакового размера;
CTRL+SHIFT+F3 – убрать правую панель;
CTR+U – поменять панели местами;
SHIFT+A…SHIFT+Z – сменить диск на активной панели (A, Z – обозначение дисков);
ALT+F1 – выбор диска на левой панели;
ALT+F2 – выбор диска на правой панели;
SHIFT+F4 – создать новый файл (редактировать новый файл);
F2 – переименовать файл, каталог;
F3 – просмотр файла;
F4 – редактирование файла (открываете в Блокноте);
F5 – копирование файла/каталога (папки);
F6 – перемещение файла/каталога (папки);
F7 – создание каталога (папки);
F8 – удаление файла, каталога;
ALT+F5 – сжатие выделенных файлов/папок;
ALT+F6 – извлечение файлов/папок из выделенных архивов;
ALT+F7 – поиск;
SHIFT+↑, SHIFT+↓ – выделение файлов;
+(NUM) (NUM означает использование цифровой клавиатуры) – выделить определённые файлы и каталоги активной панели;
ALT+++(NUM) – выделить все файлы на активной панели с одинаковым расширением;
*(NUM) – инвертировать выделение на активной панели;
CTRL+–(NUM) – снять выделение с файлов и каталогов на активной панели;
ALT+–(NUM) – снять выделение со всех файлов на активной панели с одинаковым расширением.

Для упрощения работы в файловом менеджере можно добавить панель функциональных клавиш (рис. 3.11). Для этого:

4. В левой части окна Параметры выделите строчку Панель функциональных клавиш и сделайте активным параметр Сделать видимым панель функциональных клавиш, установив флажок. Нажмите OK.

Рис. 3.11. Панель функциональных клавиш

Выбор группы файлов. Для выделения нескольких файлов работает «выделение в стиле Windows», при котором используется комбинация клавиш SHIFT+↑ и SHIFT+↓. В этом случае вы сможете выделить группу файлов, располагающихся на файловой панели друг за другом.

Для выделения объектов файловой системы также можно использовать клавишу Insert (будет осуществлён выбор файлов, как в Norton Commander), правую кнопку мыши, пробел, но при этом необходимо в окне Параметры установить соответствующие параметры (рис. 3.12).
Рис. 3.12. Окно Параметры

При выборе группы файлов также можно использовать шаблоны (маски) имени файла.

Шаблон имени файла – специальная форма, в которой в полях имени и расширении файла используются символы «*» или «?». Символ «*» служит для замены любой последовательности символов, символ «?» – для замены одного символа. Например, по шаблону A*.*.*.* будет происходить обращение к группе файлов, имя которых начинается на «A» и состоит из любого количества символов, а расширение состоит только из 4 символов.

При нажатии клавиши «+» на дополнительной клавиатуре (+(NUM)) есть возможность задать не одну маску выбора, а несколько (рис. 3.13). Шаблоны имён файлов указываются через «;».

Рис. 3.13. Окно Выбор элементов для задания шаблонов имён файлов

При применении указанного шаблона (рис. 3.13) на активной панели будут выделены файлы с расширением ppt и xlsx (рис. 3.14).
Рис. 3.14. На панели выделена группа файлов по шаблону

Чтобы выбрать все файлы, расширение у которых такое же, как у выделенного файла, а имя произвольное, используется комбинация $ALT++(NUM)$.

!!! Перед выполнением задания в своём диске I создайте четыре файла: пример1.xlsx, пример2.xlsx, new1.docx, new2.docx, file1.txt. Проверьте на диске C наличие папки Temp.

На диске C в папке Temp создайте папку с именем Студент. Для этого:

5. На левой панели выберите диск C. Можно использовать несколько способов:
 - нажмите сочетание клавиш $ALT+F1$ и с помощью клавиш управления курсором «←» «→» выберите нужный диск;
 - сделайте левую панель активной и нажмите $SHIFT+C$ (C — имя диска);

6. Если после выбора диска не открылся корневой каталог, перейдите в него самостоятельно.

7. Откройте папку Temp.

8. Нажмите клавишу $F7$.

Откроется окно для ввода имени новой папки (каталога). Введите имя Студент (рис. 3.15). Нажмите OK.

Рис. 3.15. Создание нового каталога (папки)
Если папка на панели не отобразилась, то обновите содержимое, нажав комбинацию
CTRL+R.
Переместите файл file1.txt, расположенный в корневом каталоге диска I, в папку СТУДЕНТ. Для этого:

9. На любой панели откройте C:\Temp\Студент.
10. На другой панели выделите файл file1.txt и нажимаем F6 (перемещение) (рис. 3.16).

Если перемещённый файл не отображается, обновите содержимое папки.

Рис. 3.16. Перемещение файла

Скопируйте файлы с расширением .xlsx, расположенные на диске I в C:\Temp. Для этого
11. На левой панели откройте C:\Temp.
12. На правой панели откройте диск I.

Необходимо выделить все файлы с расширением .xlsx. Это можно сделать любым из представленных способов:
– нажмите +(NUM) и введите шаблон *.xlsx;
– выделите один из файлов с расширением .xlsx и нажмите ALT++(NUM).
13. Нажмите клавишу F5 для копирования (рис. 3.17).
Рис. 3.17. Копирование группы файлов

Обновите левую панель, если не отобрались скопированные файлы.

!!! При выполнении операций копирования, перемещения, упаковки и распаковки файлов/папок на одной из панелей открываем папку, куда будущие скопированы, перемещены, упакованы и распакованы файлы/папки, а на другой выделяем файлы (папки), к которым будет применена файловая операция.

Используя фильтр, на диске I отображите только файлы с расширением .xlsx. Для этого:
14. Откройте диск I на любой из панелей.
15. Выберите пункт меню Каталог → Фильтр → Задать фильтр (или нажмите комбинацию Ctrl+F).
16. В открывшемся окне Назначить фильтр укажите шаблон имени файла, как показано на рис. 3.18.

Рис. 3.18. Указание шаблона для фильтрации

Будут отображены только файлы с расширением .xlsx и папки (рис. 3.19).
17. Для снятия фильтра выберите Каталог → Фильтр → Все файлы или CTRL+F и нажмите кнопку Все файлы.
Операции с файлами можно производить с помощью команд меню или с помощью приемов управления с помощью мыши. Самостоятельно ознакомьтесь с командами пунктов меню.

Требования к защите лабораторной работы
Для защиты лабораторной работы необходимо:

1. Уметь:
 - копировать, перемещать, удалять, переименовывать, упаковывать, распаковывать файлы/папки;
 - открывать папки/файлы;
 - переходить в корневой каталог, на один уровень вверх;
 - осуществлять упорядочивание файлов/папок по имени и другим параметрам;
 - осуществлять поиск файлов;
 - изменять представление информации в панелях (представление содержимого в виде списка, таблицы и т. д.);
 - осуществлять выбор группы файлов;
 - применять фильтр для отображения определённых файлов на панели;
 - использовать окно Параметры для осуществления нужных настроек;
 - добавлять и удалять панели инструментов в окне файлового менеджера;
 - работать с командами пунктов меню.

2. Знать и применять на практике клавиши/ комбинации клавиш: TAB; CTRL+R; CTR+U; SHIFT+A...SHIFT+Z; ALT+F1; ALT+F2; F2; F3; F4; F5; F6; F7; F8; ALT+F5; ALT+F6; ALT+F7; +(NUM); ALT+ +(NUM); CTRL+- (NUM); ALT+-(NUM).

Контрольные вопросы
1. Определите назначение файловых менеджеров.
2. Какие интерфейсы бывают у файловых менеджеров?
3. Перечислите названия файловых менеджеров.
4. Что такое шаблон (маска) имени файла?
4. РАБОТА В ОС WINDOWS В КОМАНДНОМ РЕЖИМЕ

Цель работы: освоить основные принципы работы в командной строке.

Задание к лабораторной работе
1. Ознакомиться с общими сведениями о командной строке.
2. Выполнить задания, рассмотренные в лабораторной работе.
3. Выполнить задания для самостоятельной работы.
4. Ознакомиться с требованиями к защите лабораторной работы.
5. Подготовить ответы на контрольные вопросы.

Общие сведения. Командная строка Windows – это отдельное программное обеспечение, которое входит в состав операционной системы и обеспечивает взаимосвязь между пользователем и операционной системой. Основное преимущество командной строки состоит в том, что она позволяет вводить все команды без участия графического интерфейса. Командная строка запускается в своей оболочке, предназначена для более опытных пользователей и помогает в таких сложных ситуациях, когда другие команды уже не работают.

Режим командной строки в среде Windows включается при запуске приложения cmd.exe (интерпретатор командных строк), которое обычно находится в папке Windows\Sistem32.

Запуск интерпретатора команд
Рассмотрим несколько способов запуска интерпретатора команд.
Способ 1. Нажмите комбинацию клавиш Windows+R. В окне Выполнить наберите команду CMD и нажмите клавишу Enter (рис. 4.1).

Рис. 4.1. Запуск интерпретатора команд

Способ 2. Открытие окна Выполнить через Пуск. (Пуск → Программы → Стандартные → Командная строка).
1. Запустите командную строку любым способом.
 После запуска появится окно оболочки командной строки (рис. 4.2).
Изменение оформления окна командной строки
Цвет фона и цвет символов окна можно изменить, для этого
2. Вызовите контекстное меню строки заголовка (рис. 4.3).

Если вы выберете пункт Умолчания, то настройки будут активны при всех последующих запусках cmd.exe. Если выберете Свойства, то они будут применены только к окну, в котором работаете сейчас.
3. Выберите пункт Свойства. Откроется окно диалога Свойства (рис. 4.4).

4. На вкладке Цвета установите переключатель в положение Текст на экране и выберите цвет Чёрный.
5. Для фона экрана выберите белый цвет.
 В итоге цветовое оформление окна будет выглядеть, как показано на рис. 4.5.
Рис. 4.5. Окно командной строки с изменённым цветом фона и текста

В окне оболочки командной строки вы видите приглашение (рис. 4.6). Приглашение в вашем окне будет отличаться от представленного.

Рис. 4.6. Приглашение командной строки

Команда-приглашение сообщает вам о том, что командный процессор готов принять команду и в данном случае (рис. 4.6) активным диском является диск C.

Вывод справки по командам

Вы можете познакомиться с командами командной строки, используя команду help.

6. Наберите команду help (рис. 4.7) и осуществите её ввод, нажав клавишу Enter.

Рис. 4.7. Ввод команды Help

Для просмотра выведенных команд и их описания используйте полосу прокрутки окна. В списке отображаются основные часто используемые команды.

Для просмотра справки по одной команде формат команды имеет вид help имя команды или имя команды/?.

Узнайте назначение команд CD и CLS. Для этого:

7. В командной строке наберите help CD и осуществите ввод (рис. 4.8).
8. Наберите команду CLS/? (рис. 4.9). Вы прочитали, что команда CLS позволяет очистить содержимое экрана.
9. Осуществите ввод команды CLS (рис 4.9).

```
C:\Users\Настя>CLS/?
Очищает содержимое экрана.
CLS
C:\Users\Настя>
```

Рис. 4.9. Вывод справки по команде CLS. Применение команды

Команда смены текущего диска
Для смены текущего диска надо набрать имя диска, который должен стать текущим и затем двоеточие.
$G: -$ переход на диск G.
$I: -$ переход на диск I.
На рис. 4.10 показан переход на диск G.

```
C:\Windows\System32\cmd.exe
C:\Users\Настя>G:
G:\>
```

Рис. 4.10. Переход на диск G

10. Осуществите переход на диск I с диска C и обратно.
Изменение текущего каталога (папки)

Формат команды: CD [disk:] путь

Если в команде задан диск, то текущий каталог изменяется на этом диске, иначе на текущем. Команда CD без параметров сообщает текущий диск и каталог.

CD\ – переход в корневой каталог текущего диска (рис. 4.11).

![CD\]

Рис. 4.11. Переход в корневой каталог диска G

На рис. 4.12 показан переход на диск G с переходом в папку Mathcad.

![G:
\MathCAD>CD\
G:\>]

Рис. 4.12. Смена диска с переходом в папку Mathcad

11. Сделайте текущим диском диск I и перейдите в нём в указанную вами папку.

Создание нового каталога (папки)

MD – команда создания нового каталога.
Формат команды: MD [disk:] путь.

На рис. 4.14 показано создание папки lab2 в текущем каталоге.

![G:\MathCAD>MD lab2]

Рис. 4.14. Создание папки в текущем каталоге

На рис. 4.15 показано создание папки понедельник в корневом каталоге диска D.

![G:\MathCAD>MD D:\понедельник]

Рис. 4.15. Создание папки
12. На диске I в выбранной вами папке создайте новую папку.

Команда просмотра содержимого каталога (папки)

DIR – команда просмотра содержимого каталога.

Формат команды:
```
DIR [диск:] [путь\] [имя файла] [параметры]
```

В имени файла можно употреблять символы * и ?. Если имя файла не задано, то выводится всё оглавление каталога, иначе выводятся только сведения о данном файле или группе файлов. Если в команде не указаны диск или путь, то подразумевается текущий диск и текущий каталог.

Формат вывода сведений о каталоге можно изменить параметрами команды **DIR**.

13. Используя команду *help* узнайте о дополнительных параметрах команды **DIR**.

Примеры:

DIR – вывод оглавления текущего каталога.

DIR * .exe – вывод сведений о файлах с расширением *exe* из текущего каталога.

DIR D: – вывод оглавления текущего каталога на диске *D*.

DIR D: – вывод оглавления корневого каталога на диске *D*.

На рис. 4.16 показан вывод оглавления текущего каталога на диске *C*.

Список файлов и папок на диске *C*:

<table>
<thead>
<tr>
<th>Файл/Папка</th>
<th>Размер</th>
<th>Дата/Время</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. BAS</td>
<td>634</td>
<td>02.03.2013 00:27</td>
</tr>
<tr>
<td>autoexec.bat</td>
<td>24</td>
<td>19.09.2006 06:43</td>
</tr>
<tr>
<td>dir</td>
<td>10</td>
<td>19.09.2006 06:43</td>
</tr>
<tr>
<td>ConsUserD ata</td>
<td>22.01.2012 12:28</td>
<td></td>
</tr>
<tr>
<td>database</td>
<td>18.02.2014 22:18</td>
<td></td>
</tr>
<tr>
<td>Down loads</td>
<td>12.10.2014 15:44</td>
<td></td>
</tr>
<tr>
<td>downloads</td>
<td>12.10.2014 15:44</td>
<td></td>
</tr>
<tr>
<td>dir</td>
<td>10</td>
<td>30.12.2008 21:39</td>
</tr>
<tr>
<td>dir</td>
<td>10</td>
<td>19.06.2008 22:10</td>
</tr>
<tr>
<td>M50U.BIN</td>
<td>1048</td>
<td>30.06.2008 19:01</td>
</tr>
<tr>
<td>M50U_M50UM_VISTA.10</td>
<td>13</td>
<td>30.06.2008 19:01</td>
</tr>
<tr>
<td>M50U_M50UM_VISTA.10</td>
<td>14</td>
<td>30.06.2008 19:01</td>
</tr>
<tr>
<td>M50U_M50UM_VISTA.10</td>
<td>14</td>
<td>30.06.2008 19:01</td>
</tr>
<tr>
<td>settings.ini</td>
<td>510</td>
<td>16.03.2012 08:12</td>
</tr>
</tbody>
</table>

Рис. 4.16. Вывод оглавления текущего каталога

На рис. 4.17 показан вывод содержимого папки *test* на диске *D*.
Удаление каталога

RD – удаление пустого каталога
Формат команды: RD [disk:]путь

С помощью команды RD можно удалить только пустой каталог.
Удаление папки lab2 в текущем каталоге (рис. 4.18).

![Снимок экрана](image1.png)

Рис. 4.18. Удаление папки

Удаление вложенной папки lab_1 с диска D (рис. 4.19).

![Снимок экрана](image2.png)

Рис. 4.19. Удаление вложенной папки

Удаление непустых папок

14. Посмотрите назначение команды RMDIR.
На рис. 4.20 представлено удаление непустой папки с именем функция.

![Снимок экрана](image3.png)

Рис. 4.20. Удаление непустой папки функция

Создание каталогов и вложенных каталогов

15. Посмотрите назначение команды MKDIR.
Создание папки с (рис. 4.21):

```
C:\Users\Настя>mkdir c
C:\Users\Настя>
```

Рис. 4.21. Создание папки

Создание вложенных папок (рис. 4.22):

```
C:\Users\Настя>mkdir C:\1\2\3
C:\Users\Настя>
```

Рис. 4.22. Создание вложенных папок

Переименование каталога

MOVE – команда переименования каталога.
Формат команды: MOVE имя каталога новое имя каталога
У старого имени каталога можно указать диск и путь, это позволяет переименовывать не только подкаталоги текущего каталога, но и другие каталоги.

MOVE win win.310 – переименование подкаталога WIN текущего каталога с присвоением ему имени WIN.310.
MOVE a:\temp tmp – переименование подкаталога temp корневого каталога диска А с присвоением ему имени TMP.
Переименование каталога с именем 3 в каталог с именем new (рис. 4.23).

```
G:\>move \1\2\3 1\2\lem
1 папок перемещено.
G:\>
```

Рис. 4.23. Переименование каталога

Создание текстовых файлов

Небольшие текстовые файлы можно набрать непосредственно в окне командной строки.
COPY CON – команда для набора небольших текстовых файлов.
Формат команды: COPY CON имя файла.
После ввода этой команды нужно будет поочерёдно вводить строки файла. В конце каждой строки надо нажимать клавишу Enter, а после ввода последней – нажать клавишу F6 и затем Enter.
На рис. 4.24 показано создание текстового файла на диске D.
16. На диске I в папке Пример создайте текстовый файл.

Удаление файлов

DEL – команда удаления файлов.
Формат команды: DEL имя файла
В имени файла можно употреблять символы * и ?.
Del paper.doc – удаление файла paper.doc из текущего каталога.

На рис. 4.25 показано содержимое диска I.

На рис. 4.25 видно, что в корневом каталоге диска I находятся 4 файла. На рис. 4.26 показана команда удаления файла new1.docx.

Рис. 4.24. Создание текстового файла

Рис. 4.25. Вывод содержимого диска I

Рис. 4.26. Удаление файла new1.docx
Рассмотрим на рис. 4.27 удаление файлов с расширением .xlsx, при этом текущим сделаем корневой каталог диска I. В команде удаления путь полностью не прописан, так как активным является корневой каталог диска I.

```
C:\Users\Пользователь> I:
I:\> del *.xlsx
I:\> dir i:
Том в устройстве I имеет метку Transcend
Серийный номер тома: B16C-PD8B
Содержимое папки I:\
25.10.2014  18:05   0 new2.docx
25.10.2014  18:00   <DIR> new
1 файлов    0 байт
1 папок     270 073 856 байт свободно
```

Рис. 4.27. Удаление файлов с расширением .xlsx

Переименование файлов

`REN` – команда переименования файлов

Формат команды: `REN [диск:]\[путь\]имя-файла имя-файла`

Диск и путь задают, учитывая, в каком каталоге переименовываются файлы. Если имя диска или путь опущены, то подразумеваются текущий диск и текущий каталог.

На рис. 4.28 представлено переименование файла `new2.docx` в `new1.docx`.

```
1:\> ren new2.docx new1.docx
```

Рис. 4.28. Переименование файла

Копирование файлов

`COPY` – команда копирования файлов.

17. Самостоятельно посмотрите формат команды, используя справку по команде.

`D:\ пример> copy file.txt D:\` – копирование файла `file.txt` в корневой каталог диска `D`.

Перемещение файла в другой каталог

`MOVE` – команда перемещения файла в другой каталог.

Посмотрите справку по команде `MOVE`.

`Move *.doc D:` – перемещение файлов с расширением `doc` в текущем каталоге в текущий каталог диска `D`.

`D:\ пример> move file.txt C:\ temp` – перемещение `file.txt` на диск `C` в папку `temp`.

Вывод файла на экран

Для вывода текстового файла на экран можно использовать команду `Type`.

29
type paper.txt — вывод на экран файла paper.txt из текущего каталога.

type a:\doc\t.txt — вывод на экран файла t.txt из каталога a:\doc.

Команды вывода информации о дате/времени, установке даты/времени в компьютере
 18. Самостоятельно узнайте о работе команд DATE, TIME.

Запуск приложения Калькулятор (рис. 4.29).

 1: \> calc

Рис. 4.29. Запуск приложения Калькулятор

Вывод из режима командной строки
Exit — выход из режима командной строки.

Задание для самостоятельного выполнения

Пред выполнением задания проверьте наличие папки TEMP на диске C. Если её нет, то создайте.

При выполнении каждого пункта задания делайте скриншот окна командной строки и помещайте его в документ MS Word, чтобы показать для проверки преподавателю.

1. Откройте окно для работы в командном режиме.
2. Сделайте текущим диск I (или любой другой диск, на котором вы будете работать, кроме диска C).
3. На диске I в корневом каталоге создайте две папки с именами Панка1 и Панка2.
4. Просмотрите содержимое диска I.
5. В каталоге Панка1 создайте текстовый файл с именем Биография. Наберите три строки вашей биографии с указанием вашей фамилии, имени и отчества.
6. Просмотрите содержимое каталога Панка1.
7. Сделайте текущим каталог Панка2.
8. В каталоге Панка2 создайте текстовый документ с именем Список. Введите любой список, содержащий 5 пунктов.
9. Скопируйте документ Биография на диск C в папку Temp.
10. Просмотрите содержимое папки Temp.
11. Переместите файл Список.txt в корневой каталог диска I.
12. Перейменуйте каталог Панка 2 в Панка3.
13. Проверьте содержимое каталога Панка3. Если каталог пуст, то удалите его.
14. Перейменуйте документ Биография.txt в файл Я.txt.
15. Удалите файл Список.
16. Выведите на экран дату и время, установленные на компьютере.
17. Запустите приложение Блокнот (notepad).
18. Выйдите из режима командной строки.

Требования к защите лабораторной работы
Необходимо уметь применять команды, рассмотренные в лабораторной работе.

Контрольные вопросы
1. Определение понятия файл.
2. Как открыть окно для работы в командной строке?
3. Что такое командная строка?
4. Назначение командной строки.
5. Как изменить оформление окна командной строки?
5. ВЫЧИСЛЕНИЕ ФУНКЦИЙ В EXCEL

Цель работы: освоить приёмы работы с математическими функциями в Excel.

Задание к лабораторной работе
1. Выполнить задание, рассматриваемое в лабораторной работе.
2. Выполнить задание по вариантам.
3. Ответить на контрольные вопросы.

Задание 1. Вычислить значение функции \(f(x) = \frac{\sin^2(x + \sqrt{5}) + |x|}{\sqrt{x}} \).

Порядок работы
Для вычисления значения указанной функции будут применены функции из категории Математические СТЕПЕНЬ, ABS, КОРЕНЬ.

Ввод любых данных в ячейку таблицы Excel завершается нажатием клавиши Enter. Обратите внимание, что в Excel принято использовать запятую для отделения целой и дробной части десятичного числа.
1. В ячейку A1 внесите имя переменной x.
2. В ячейку A2 введите значение переменной x, при котором будете вычислять значение функции (например, 0,5).
3. В ячейку B1 внесите имя функции \(f \) (рис. 5.1).

![Рис. 5.1. Ввод данных](image)

В ячейку B2 введите формулу для вычисления значения функции. Для этого:
5. На вкладке Формулы в группе Библиотека функций нажмите кнопку Вставить функцию (рис. 5.2).

![Рис. 5.2. Группа Библиотека функций](image)

Обратите внимание, что «=» в ячейке B2 появилось автоматически после вызова Мастера функций.
Открылось окно Мастер функций – шаг 1 из 2. На этом шаге необходимо указать категорию, к которой относится функция, и выбрать саму функцию (рис. 5.3).

![Иллюстрация окна Мастера функций](image)

Рис. 5.3. Окно Мастера функций

6. Укажите категорию Математические и выберите функцию СТЕПЕНЬ.

После того как вы выделили название функции в поле Выберите функцию, ниже поля будет указан общий вид функции и её назначение. Также возможно посмотреть справку по функции, используя гиперссылку Справка по этой функции.

7. Нажмите кнопку ОК. Откроется окно Аргументы функции (рис. 5.4).

![Иллюстрация окна Аргументы функции](image)

Рис. 5.4. Окно Аргументы функции СТЕПЕНЬ

Установив курсор в поле Число или Степень, вы увидите описание назначения поля.

После вызова функции имя функции отображается в поле имени и в строке формул (рис. 5.5).
Если при работе с функциями окно Аргументы функции закрывает необходимые ячейки, то его можно свернуть, нажав кнопку Свернуть в поле ввода.

8. Выполните сворачивание окна, затем разверните окно, нажав кнопку Развернуть.

Окно Аргументы функции вы можете передвигать на Рабочем листе за строку заголовка.

Установите курсор в поле Число. В окне аргументы функции написано, что Число – это номер основания\(^1\) – любое действительное число. Основанием степени является выражение \(\sin(x + \sqrt{5})\). Чтобы не набирать функцию \(\sin\) вручную, вызовем мастер функций. Для этого

9. Установите курсор в поле Число. Разверните выпадающий список с функциями из Поля имени.

10. В выпадающем списке вы увидите функции, с которыми недавно работал пользователь. Если вы не видите функцию \(\sin\), то выберите Другие функции... (рис. 5.6).

\(^1\) Основание степени.
После выбора функции \sin откроется окно диалога Аргументы функции \sin. Обратите внимание, как изменилась формула в строке формул (рис. 5.7).

В окне Аргументы функции вы видите одно поле для ввода Число. В это поле необходимо ввести аргумент функции. Им является выражение $x + \sqrt{5}$.

11. Установите курсор в поле Число и укажите ссылку на ячейку, в которой находится значение переменной x, щёлкнув мышкой по ячейке $A2$ (рис. 5.8).

Обратите внимание, как меняется выражение в строке формул.

Рис. 5.6. Открытие списка функций из Поля имени

Рис. 5.7. Окно Аргументы функции \sin

Рис. 5.8. Указание аргумента функции \sin
12. В поле ввода Число поставьте знак «+» после адреса ячейки A2 (рис. 5.9).

![Image](image1.png)

Рис. 5.9. Указание аргумента функции SIN

13. Вызовите функцию КОРЕНЬ из Поля имени (рис. 5.10).

![Image](image2.png)

Рис. 5.10. Окно Аргументы функции КОРЕНЬ

14. Установите курсор в поле Число и укажите адрес ячейки A2, в которой находится значение переменной x (рис. 5.11).

![Image](image3.png)

Рис. 5.11. Указание аргумента функции КОРЕНЬ

Выражение \(\sqrt[2]{\sin(x + \sqrt{5})} \) соответствует выражению \(\sin(x + \sqrt{5}) \).

В окне Аргументы функции КОРЕНЬ кнопку OK нажимать не надо, так как не указан второй аргумент функции СТЕПЕНЬ – показатель степени 2.

15. Чтобы вернуться в окно Аргументы функции СТЕПЕНЬ, установите курсор в строке формул на имя функции СТЕПЕНЬ. Откроется окно диалога Аргументы функции СТЕПЕНЬ (рис. 5.12).

![Image](image4.png)

Рис. 5.12. Окно Аргументы функции СТЕПЕНЬ
16. Установите курсор в поле Степень и поставьте значение степени 2 (рис. 5.13).

Рис. 5.13. Указание показателя степени

17. Нажмите кнопку OK.
 В итоге вы получили формулу =СТЕПЕНЬ(SIN(A2+КОРЕНЬ(A2));2)
При х = 0,5 значение набранного выражения равно 0,87 (значение указанно округлённо).
 К полученному выражение нужно прибавить |x|. Для этого:
18. Установите курсор в строке формул после набранного выражения и поставьте знак «+» (рис. 5.14).

Рис. 5.14. Работа с формулой в Строка формул

19. Слева от строки формулы нажмите кнопку Вставить функцию .
 Откроется окно Мастера функций.
20. Выберите категорию Математические и функцию ABS. Откроется окно Аргументы функции ABS (рис. 5.15).

Рис. 5.15. Окно Аргументы функции ABS

21. В поле Число укажите адрес ячейки A2. Нажмите кнопку OK (рис. 5.16).
В итоге вы набрали выражение как показано на рис. 5.17.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>Д</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>x</td>
<td>f</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.5</td>
<td>1.37346</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Рис. 5.17. Набранная формула

Значение в ячейке B2 может отличаться от представленного на рис. 5.17 количеством десятичных знаков.

Чтобы изменить количество десятичных знаков, на вкладке Главная в группе Число используйте кнопки Уменьшить разрядность/Увеличить разрядность

22. Установите два десятичных знака после запятой.

Изменять количество десятичных знаков можно используя команды окна диалога Формат ячEEK. Для этого:

23. Откройте окно диалога группы Число Формат ячек (рис. 5.18), используя кнопку в правом нижнем углу группы.

Рис. 5.18. Окно диалога Формат ячек
24. На вкладке Число в области Числовые форматы: выберите формат Числовой.
25. Для параметра Число десятичных знаков: установите нужное значение.
Установливая определённое количество десятичных знаков, используя формат ячейки, вы изменяете форму отображения числа, а не меняете его значение.
Набранные выражение нужно разделить на $\sqrt[3]{x}$. Для этого:
26. В строке формул всю сумму возьмите в скобки и поставьте знак деления «/» (рис. 5.19).

![Рис. 5.19. Изменённое выражение в строке формул](image)
Если вы не возьмёте сумму в скобки, то на $\sqrt[3]{x}$ разделится только $|x|$.
27. На вкладке Формулы в группе Библиотека функций в категории Математические выберите функцию СТЕПЕНЬ (рис. 5.20).

![Рис. 5.20. Выбор функции СТЕПЕНЬ из категории Математические](image)
28. Для основания степени укажите адрес ячейки A2, показатель степени – 1/3 (рис. 5.21).
29. Нажмите OK.

![Рис. 5.21. Ввод аргументов функции СТЕПЕНЬ](image)
В итоге вы получите формулу, как показано на рис. 5.22. Значение функции при \(x = 0,5 \) равно 1,73 (ответ является округлённым, так как число десятичных знаков было уменьшено). Следует учитывать, что такой ответ вы видите при указании двух знаков после запятой.

<table>
<thead>
<tr>
<th>Б2</th>
<th>f, =СТЕПЕНЬ(SIN(A2)+КОРЕНЬ(A2)),2+ABS(A2))/СТЕПЕНЬ(A2;1/3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>2</td>
<td>0,5</td>
</tr>
</tbody>
</table>

Рис. 5.22. Итоговая формула

Если вы увеличите число знаков до 5, то есть измените формат ячейки, то значение в ячейке будет отображаться, как показано на рис. 5.23.

Рис. 5.23. Изменённый формат ячейки с указанием 5 десятичных знаков

Чтобы вычислить значение функции при другом значении переменной, необходимо его ввести в ячейку A2. Автоматически произойдёт пересчёт значения.

Варианты для самостоятельной работы представлены в Таблице 1 приложения.

Задание для самостоятельной работы: Вычислить значение функции.

Контрольные вопросы
1. Дайте определение понятиям:
 – электронная таблица;
 – табличный процессор.
2. Как называется документ Excel?
3. Какое расширение имеет файл, созданный в Excel?
4. Как переименовать рабочий лист?
5. Как обозначаются ячейки?
6. Понятие формулы в Excel.
7. Где располагается строка формул?
8. Перечислите способы вызова мастера функций.
9. Как можно произвести редактирование формулы?
10. Какая ячейка называется активной?
11. Какой знак используется в качестве разделителя целой и дробной части при вводе нецелых значений?
12. Как вычислить Sin30°?
6. СОЗДАНИЕ ТАБЛИЦ. ВЫЧИСЛЕНИЯ В ТАБЛИЦАХ

Цель работы: освоить приёмы по созданию таблиц в Excel и проведению расчётов по данным таблиц с использованием функций.

Задание к лабораторной работе
1. Выполнить задание, рассматриваемое в лабораторной работе.
2. Ознакомиться с требованиями к защите лабораторной работы.
3. Подготовить ответы на контрольные вопросы.

Задание. Создать в Excel таблицу, представленную на рис. 6.1.

<table>
<thead>
<tr>
<th>Табельный номер</th>
<th>Разряд</th>
<th>Количество стажировок</th>
<th>Оклад, руб.</th>
<th>Сумма, руб.</th>
<th>Начисленная сумма, руб.</th>
<th>Стажировка</th>
<th>Оклад в % от оклада Итого</th>
</tr>
</thead>
<tbody>
<tr>
<td>223</td>
<td>4</td>
<td>1</td>
<td>15 000</td>
<td>2260</td>
<td>17 250</td>
<td>Стажировка в 2016 г.</td>
<td>22.6</td>
</tr>
<tr>
<td>224</td>
<td>2</td>
<td>1</td>
<td>16 500</td>
<td>2260</td>
<td>19 305</td>
<td>Стажировка в 2016 г.</td>
<td>22.6</td>
</tr>
<tr>
<td>226</td>
<td>3</td>
<td>2</td>
<td>20 000</td>
<td>4000</td>
<td>24 000</td>
<td>Стажировка в 2016 г.</td>
<td>24.8</td>
</tr>
<tr>
<td>Итого</td>
<td></td>
<td></td>
<td>66 500</td>
<td>11300</td>
<td>77 800</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Рис. 6.1. Итоговый вариант таблицы

Порядок работы
2. На вкладке Главная в группе Выравнивание откройте список команд кнопки Объединение ячEEK и выберите Объединить и поместить в центре (рис. 6.2).

Рис. 6.2. Открытие команды Объединить и поместить в центре

В результате ячейки таблицы должны быть представлены так, как показано на рис. 6.3.

5. Выделите диапазон ячеек для форматирования A1:G2 и откройте окно диалога Формат ячеек (рис. 6.5) группы Выравнивание. Откроется окно диалога Формат ячеек.

2 Шрифт – Arial Cyr, размер шрифта – 10 пт.
6. На вкладке Выравнивание окна диалога установите параметры: Выравнивание по горизонтали – по центру, Выравнивание по вертикали – по центру (рис. 6.6).

Рис. 6.6. Задание параметров на вкладке Выравнивание

После применения форматирования текст будет отображаться, как показано на рис. 6.7.

Рис. 6.7. Изменённый формат ячеек

В ячейках A1, C1, D1, F2, G1 текст не отображается полностью. Можно увеличить ширину столбца для полного отображения текста. Это действие можно выполнить несколькими способами.

Способ 1. Наведите указатель мыши на правую границу заголовка столбца и, удерживая левую кнопку мыши, увеличьте ширину столбца при помощи перетаскивания.

Способ 2. Вызовите контекстное меню заголовка столбца, ширину которого надо увеличить, и выберите команду Ширина столбца…. В открывшемся окне Ширина столбца установите нужно значение.

Аналогичными способами можно увеличивать/уменьшать высоту строки.

Также для полного отображения текста можно применить Перенос текста по словам.

7. Выделите ячейку A1 и на вкладке Главная в группе Выравнивание нажмите кнопку Перенос текста.
Перенос текста можно осуществлять, используя параметры окна диалога Формат ячейк.
Текст в ячейке может отображаться, как показано на рис. 6.8.

![Рис. 6.8. Отображение текста в ячейке A1](image1)

Скопируйте формат ячейки A1 на ячейки C1, D1, F2, G1. Для этого
8. Выделите ячейку A1, на вкладке Главная в группе Буфер обмена
нажмите кнопку Формат по образцу и щёлкните по ячейки C1.
9. Скопируйте формат на ячейки D1, F2, G1.
После применения форматирования таблица будет выглядеть, как показано на рис. 6.9.

![Рис. 6.9. Отформатированные ячейки](image2)

Так как к ячейке F2 был применён формат объединённой ячейки A1, то произошло объединение ячеек диапазона F2:F3. Уберём формат с ячейки F2. Для этого:
10. Выделите ячейку F2. На вкладке Главная в группе Редактирование
откройте команды кнопки Очистить и выберите команду Очистить форматы.
11. Для ячейки F2 установите перенос текста по словам и выравнивание по центру.
12. Установите нужную ширину для столбцов и высоту для строк, чтобы текст отображался в ячейках полностью (рис. 6.10).

![Рис. 6.10. Таблица с изменёнными значениями параметров ячеек](image3)

Далее нужно внести табельные номера сотрудников с 223 по 226. Значения табельных номеров отличаются друг от друга на 1. Для формирования ряда данных в Excel существуют различные способы. Рассмотрим пример получения ряда чисел из диапазона от −5 до 5 с шагом 0,5: необходимо получить числа −5; −4,5; −4; −3,5; ... 4,5; 5.
13. Для работы откройте Лист 2 Рабочей книги.
Способ 1. Использование инструмента Прогрессия.
14. В ячейку A1 введите начальное значение –5 и нажмите клавишу Enter.
!!! Ввод любых данных в ячейку завершается нажатием клавиши Enter.
15. Сделайте активной ячейку, в которую было внесено начальное значение.
16. На вкладке Главная откройте выпадающий список команд кнопки Заполнить и выберите команду Прогрессия…. Откроется окно диалога Прогрессия.
17. В окне диалога Прогрессия установите параметры, которые показаны на рис. 6.11.

![Рис. 6.11. Окно диалога Прогрессия](image)

18. Нажмите кнопку OK.

Способ 2. Автозаполнение числами.
19. В ячейку B1 внесите начальное значение –5, а в B2 – последующее значение (начальное значение плюс шаг) (рис. 6.12);

![Рис. 6.12. Ввод данных в ячейки](image)

20. Используя левую кнопку мыши (ЛКМ) выделите диапазон ячеек B1:B2 (рис. 6.13);

![Рис. 6.13. Выделение ячеек](image)
21. Наведите указатель мыши на маркер автозаполнения (указатель мыши примет вид черного крестика). Удерживая ЛКМ, произведите заполнение ячеек числами до нужного значения (рис. 6.14, рис. 6.15).

![Рис. 6.14. Заполнение ячеек числами](image1.png)
![Рис. 6.15. Заполнение ячеек числами](image2.png)

Способ 3. Автозаполнение формулами
22. В ячейку C1 внесите начальное значение −5, в ячейку C2 – формулу (рис. 6.16).

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-5</td>
<td>-5</td>
</tr>
<tr>
<td>2</td>
<td>-4,5</td>
<td>-4,5</td>
</tr>
<tr>
<td>3</td>
<td>-4</td>
<td>-4</td>
</tr>
<tr>
<td>4</td>
<td>-3,5</td>
<td>-3,5</td>
</tr>
<tr>
<td>5</td>
<td>-3</td>
<td>-3</td>
</tr>
<tr>
<td>6</td>
<td>-2,5</td>
<td>-2,5</td>
</tr>
<tr>
<td>7</td>
<td>-2</td>
<td>-2</td>
</tr>
<tr>
<td>8</td>
<td>-1,5</td>
<td>-1,5</td>
</tr>
<tr>
<td>9</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>10</td>
<td>-0,5</td>
<td>-0,5</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>0,5</td>
<td>0,5</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>1,5</td>
<td>1,5</td>
</tr>
<tr>
<td>15</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>16</td>
<td>2,5</td>
<td>2,5</td>
</tr>
<tr>
<td>17</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>18</td>
<td>3,5</td>
<td>3,5</td>
</tr>
<tr>
<td>19</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>20</td>
<td>4,5</td>
<td>4,5</td>
</tr>
<tr>
<td>21</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

Рис. 6.16. Ввод формулы

23. Сделайте активной ячейку C2. Используя маркер автозаполнения, скопируйте (распространите) формулу на нужный диапазон (рис. 6.16).

![Рис. 6.16. Сформированные ряды числовых данных](image3.png)
В итоге вы видите, что все значения, полученные тремя способами, совпали.
24. Перейдите на лист с таблицей и сформируйте табельные номера в столбце A любым из рассмотренных способов.
25. Введите данные в таблицу, как показано на рис. 6.17.

<table>
<thead>
<tr>
<th>№</th>
<th>Табельный номер</th>
<th>Разряд</th>
<th>Количество стажировок</th>
<th>Оклад, руб.</th>
<th>Премия</th>
<th>Сумма, руб.</th>
<th>Начисленная сумма, руб.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>223</td>
<td>2</td>
<td>1</td>
<td>15000</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>224</td>
<td>2</td>
<td>0</td>
<td>15000</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>225</td>
<td>3</td>
<td>2</td>
<td>16500</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>226</td>
<td>4</td>
<td>3</td>
<td>20000</td>
<td>20</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Рис. 6.17. Таблица с введёнными данными

26. Выделите диапазон ячеек D3:D6 и откройте окно Формат ячEEK.
27. На вкладке Число выберите Числовой формат и установите Разделение групп разрядов (рис. 6.18).

В итоге данные таблицы будут выглядеть, как показано на рис. 6.19.

<table>
<thead>
<tr>
<th>№</th>
<th>Табельный номер</th>
<th>Разряд</th>
<th>Количество стажировок</th>
<th>Оклад, руб.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>223</td>
<td>2</td>
<td>1</td>
<td>16000,00</td>
</tr>
<tr>
<td>4</td>
<td>224</td>
<td>2</td>
<td>0</td>
<td>15000,00</td>
</tr>
<tr>
<td>5</td>
<td>225</td>
<td>3</td>
<td>2</td>
<td>16500,00</td>
</tr>
<tr>
<td>6</td>
<td>226</td>
<td>4</td>
<td>3</td>
<td>20000,00</td>
</tr>
</tbody>
</table>

Рис. 6.19. Числовые данные с разделением групп разрядов

28. Для значения оклада установите число десятичных знаков 0 (рис 6.20).
Определите сумму премии. Премия зависит от оклада. Процент премии указан для каждого сотрудника.

29. В ячейке F3 наберите формулу =D3/100*E3, мышкой указывая адрес ячейк.

30. Используя маркер автозаполнения, скопируйте формулу для вычисления размера премии всех сотрудников (рис. 6.21).

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Табельный номер</td>
<td>Разряд</td>
<td>Количество стажировок</td>
<td>Оклад, руб.</td>
<td>%</td>
<td>Сумма, руб.</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>223</td>
<td>2</td>
<td>1</td>
<td>15 000</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>224</td>
<td>2</td>
<td>0</td>
<td>15 000</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>225</td>
<td>3</td>
<td>2</td>
<td>16 500</td>
<td>17</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>226</td>
<td>4</td>
<td>3</td>
<td>20 000</td>
<td>20</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Рис. 6.21. Таблица с рассчитанной суммой премии

Определите начисленную сумму. Она складывается из оклада и размера премии.

31. В ячейке G3 наберите формулу =D3+F3.

32. Скопируйте формулу для определения начисленной суммы для каждого сотрудника (рис. 6.22).

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Табельный номер</td>
<td>Разряд</td>
<td>Количество стажировок</td>
<td>Оклад, руб.</td>
<td>%</td>
<td>Сумма, руб.</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>223</td>
<td>2</td>
<td>1</td>
<td>15 000</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>224</td>
<td>2</td>
<td>0</td>
<td>15 000</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>225</td>
<td>3</td>
<td>2</td>
<td>16 500</td>
<td>17</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>226</td>
<td>4</td>
<td>3</td>
<td>20 000</td>
<td>20</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Рис. 6.22. Таблица со значением начисленной суммы

В ячейку A7 внесите текст «Итого». Определите суммарный размер оклада, премии, начисленной суммы. Для этого:
33. Сделайте активной ячейку D7 и нажмите кнопку Автосумма Σ - из группы Редактирование на вкладке Главная.
34. Аналогичным способом определите суммы в ячейках F7, G7.

Создайте столбец, в котором будет получена информация о стажировках сотрудников. Если разряд больше второго и количество стажировок не превышает 2, то выведите «Стажировка в 2015 г.», в остальных случаях – «Стажировка в 2016 г.».

Осуществить выполнение такого задания можно с помощью разветвляющейся структуры. Для реализации разветвляющейся структуры в Excel используется логическая функция ЕСЛИ.

Общий вид функции ЕСЛИ: ЕСЛИ(α; β1; β2), где
α – логическое выражение;
β1 – значение (формула, ссылка на ячейку), возвращаемое, когда α истинно;
β2 – значение (формула, ссылка на ячейку), возвращаемое, когда α ложно.

В задании указано условие – разряд больше второго и количество стажировок не превышает 2. Для указания этого условия используется логическая функция И.

35. Объедините ячейки H1:H2 и внесите текст «Стажировка».
36. Сделайте активной ячейку H3 и вызовите из категории Логические функции ЕСЛИ (рис. 6.23).

Рис. 6.23. Окно Аргументы функции ЕСЛИ

37. В окне Аргументы функции поставьте курсор в поле Лог_выражение и вызовите логическую функцию И (рис. 6.24).
В поле Логическое_значение1 укажите, что разряд больше второго. Для этого:
38. Установите курсор в поле Логическое_значение1 и наберите выражение, как указано на рис. 6.25, ссылаясь мышкой на ячейку с разрядом.

В поле Логическое_значение2 укажите, что количество стажировок не превышает 2 (рис. 6.26). Кнопку ОК не нажимайте.

Обратите внимание, как записано логическое выражение в строке формул. Теперь необходимо вернуться в окно Аргументы функции ЕСЛИ. Для этого:
40. Установите курсор в строке формул на имя функции ЕСЛИ.
41. В поле Значение_если_истина и Значение_если_ложь наберите выражения, как указано на рис. 6.27.
Если вы набираете текст в окне Аргументы функции, то кавычки ставятся автоматически, если формулы набираете вручную, то кавычки необходимо указывать.

Рис. 6.27. Ввод аргументов функции ЕСЛИ

42. Скопируйте формулу на диапазон H4:H6.
43. Увеличьте ширину столбца H, чтобы текст отображался полностью (рис. 6.28).

Рис. 6.28. Таблица с полученными данными в столбце H

Определим, сколько процентов составляет оклад каждого сотрудника от суммарного размера оклада всех сотрудников.
Формула: Оклад/Суммарный оклад*100. Умножение на 100 можно заменить применением процентного формата.

44. В ячейке I3 наберите формулу =D3/D7*100.
45. Используя маркер автозаполнения, скопируйте формулу на диапазон I4:16 (рис. 6.29).

Рис. 6.29. Результат копирования формулы на диапазон I4:16
В ячейках диапазона I4:I6 появилось сообщение об ошибке #ДЕЛО/0!. В ячейке I4 формула =D4/D8*100. Но нужно делить на значение в ячейке D7, так как там находится суммарный оклад всех сотрудников. В формуле мы использовали только относительные ссылки на ячейки. А нам необходимо, чтоб при копировании формулы адрес ячейки D7 оставался постоянным. Значит, нужно в формуле на ячейку D7 установить абсолютную адресацию. Для этого
46. Выделите ячейку I3.
47. В строке формул курсор поставьте перед адресом ячейки D7 и нажмите клавишу F4.
48. Автоматически будет проставлена абсолютная адресация на ячейку.

Знаки $ для обозначения абсолютной или смешанной адресации можно ставить вручную.

49. Распространите изменённую формулу на нужный диапазон (рис. 6.30).

![Рис. 6.30. Данные, полученные в столбце I](image)

В сумме полученные значения должны составлять 100. Чтобы это проверить:
50. Выделите диапазон I3:I6 и в строке состояния окна приложения посмотрите значение суммы (рис. 6.31).

![Рис. 6.31. Значение суммы в строке состояния](image)

51. В столбе I число десятичных знаков уменьшите до одного (рис. 6.32).

![Рис. 6.32. Изменение формата ячеек в столбце I](image)
Определите количество сотрудников, у которых разряд выше 2-го. Для этого:
52. В ячейке B8 из категории Статистические вызовите функцию СЧЁТЕСЛИ.
53. Заполните поля в окне Аргументы функции, как показано на рис. 6.33.

Рис. 6.33. Значения аргументов функции СЧЁТЕСЛИ

Определите суммарный размер премии сотрудников, у которых 2-й разряд. Для выполнения задания используется функция СУММЕСЛИ из категории Математические.
54. Сделайте активной ячейку C8 и вызовите функцию СУММЕСЛИ.
55. В окне Аргументы функции СУММЕСЛИ заполните поля ввода, как указано на рис. 6.34. Формула с функцией в итоге будет иметь вид =СУММЕСЛИ(B3:B6,"=2",F3:F6).

Рис. 6.34. Значения аргументов функции СУММЕСЛИ

В итоге ваша таблица будет выглядеть, как показано на рис. 6.35.

Рис. 6.35. Таблица с новыми данными
Добавьте примечания к ячейкам B8 и C8. Для этого
56. Выделите ячейку B8, на вкладке Рецензирование в группе

Примечание нажмите кнопку Создать примечание.

57. Добавьте текст примечания, как показано на рис. 6.36.
58. К ячейке C8 также добавьте примечание.

Между строкой № 7 с итоговыми данными и строкой № 8 вставьте строку. Для этого:

59. Вызовите контекстное меню заголовка строки № 8, выберите команду Вставить.
Используя команду контекстного меню строки/столбца, можно удалять строки/столбцы, скрывать/показывать строки и столбцы. Также можно использовать команды группы Ячейки вкладки Главная.

Произведите форматирование таблицы по вашему желанию. Создайте рамку для таблицы, используя команды кнопки Границы в группе Шрифт вкладки Главная.

Рис. 6.37. Итоговый вид таблицы

Выделите цветом ячейки со значением разряда меньше 4. Для этого используется инструмент Условное форматирование. Это удобный способ применения форматирования только в том случае, когда выполняются определённые условия, например значение в ячейке достигает заданной контрольной величины.

60. Выделите диапазон ячеек с разрядом В3:В6.
61. Выберите вкладку Главная → группу Стили → Условное форматирование → Правила выделения ячеек → Меньше.
62. В появившемся окне меньше укажите в поле Форматировать ячейки, которые МЕНЬШЕ: значение 4.
63. Из выпадающего списка выберите Пользовательский формат (рис. 6.38).

Рис. 6.38. Выбор пользовательского формата

64. Откроется окно Формат ячеек. На вкладке Заливка выберите цвет заливки.
В итоге будут залиты цветом ячейки, в которых разряд меньше 4.

65. Измените значения в ячейке В3 на 4, и вы увидите, что заливка ячейки удалена, так как данные не соответствуют условиям для форматирования.
Чтобы убратать параметры условного форматирования, выделите нужный диапазон ячеек и выполните команды Условное форматирование → Удалить правила → Удалить правила из выделенных ячеек.
В итоге ваша таблица будет выглядеть, как показано на рис. 6.39.

Рис. 6.38. Итоговый вид таблицы

Требования к защите лабораторной работы

Для защиты лабораторной работы необходимо уметь:
– объединять ячейки, отменять объединение ячеек;
– удалять строки/столбцы;
– добавлять строки/столбцы;
– скрывать/отображать строки/столбцы;
– изменять границы ячеек;
– переносить текст по словам;
– устанавливать параметры размещения текста в ячейках;
– устанавливать разделитель групп разрядов числа;
– уменьшать/увеличивать количество десятичных знаков после запятой;
– находить процент от числа и число по проценту, используя процентный формат;
– использовать абсолютные, относительные и смешанные ссылки;
– использовать автосумму;
– использовать информацию строки состояния окна приложения;
– применять функции СЧЁТ, СЧЁТЕСЛИ, СУММ, СРЗНАЧ, ЕСЛИ, И, ИЛИ;
– добавлять/удалять примечание ячеек;
– применять условное форматирование, удалять правила условного форматирования;
– использовать различные способы для получения рядов данных;
– применять команду Формат по образцу;
– очищать формат ячеек.

Контрольные вопросы

1. Что позволяют определить функции СЧЁТ, СЧЁТЕСЛИ, СУММ, СРЗНАЧ, ЕСЛИ, И, ИЛИ?
2. Какие аргументы имеют функции СЧЁТ, СЧЁТЕСЛИ, СУММ, СРЗНАЧ, ЕСЛИ, И, ИЛИ?
3. Для чего применяется условное форматирование?
4. Какие способы получения рядов данных вы знаете?
5. Назначение абсолютной, относительной, смешанной адресации.
6. Как автоматически поставить абсолютную адресацию на ячейку?
7. ПОСТРОЕНИЕ ДИАГРАММ

Цель работы: освоить приёмы работы по созданию, редактированию и форматированию диаграмм различных видов.

Задание к лабораторной работе
1. Лабораторная работа находится в методическом пособии «Создание диаграмм в MS Excel 2010»\(^3\). Пособие в электронном варианте расположено в папке с заданиями для вашей специальности.
2. Варианты для самостоятельной работы находятся в сборнике задач «Создание диаграмм в MS Excel 2010»\(^4\). Сборник в электронном варианте расположен в папке с заданиями для вашей специальности.

8. РАБОТА СО СПИСКАМИ В EXCEL

Цель работы: освоить приёмы работы со списками в Excel.

Задание к лабораторной работе
1. Ознакомиться с общими сведениями по работе со списками.
2. Выполнить задание, рассмотренное в лабораторной работе.
3. Ознакомиться с требованиями к защите лабораторной работы.
4. Подготовить ответы на контрольные вопросы.

Общие сведения. Одной из типичных задач, выполняемых с помощью электронных таблиц, является ведение списков – имен и адресов людей, номеров телефонов, характеристик товаров и т. д. Excel имеет богатый набор средств для работы с такими данными, позволяет легко анализировать и систематизировать такого рода информацию.

По сути, список почти ничем не отличается от обычной таблицы Excel, кроме разве что размеров – списки обычно достаточно велики. При работе со списками или базами данных обычно придерживаются следующей терминологии: строки называются записями, столбцы – полями, заголовки столбцов – именами полей.

Правила работы со списками:
1. В верхней строке должны располагаться уникальные заголовки.
2. Каждый столбец должен содержать информацию одного типа.
3. Данные каждого типа, по которому вы хотите осуществлять сортировку, поиск или другие операции, должны располагаться в отдельном столбце.
4. В списке не должно быть пустых строк или столбцов.
5. Для списка должен отводиться отдельный лист. Если это невозможно, то список должен быть отделён от других данных рабочего листа, по крайней мере одной пустой строкой и одним пустым столбцом.
6. В списке не должно быть объединённых ячеек.

Поскольку первая и вторая строки в списке содержат информацию различного типа, Excel распознаёт верхнюю строку как строку заголовка и учитывает это при сортировке списка.

Задание: Откройте файл «Список.xlsx» (рис. 8.1) для работы со списком. При отсутствии файла наберите список самостоятельно.
Порядок работы

Закрепление строк и столбцов. При просмотре списков большого размера первая проблема, с которой сталкивается пользователь, – это прокрутка заголовков строк или столбцов за пределы окна и все неудобства, связанные с этим (рис. 8.2). В такой ситуации имеет смысл закрепить «шапку» таблицы, т. е. сделать так, чтобы полосы прокрутки не влияли на первые строки и/или столбцы таблицы.

![Рис. 8.2. Прокрутка строки заголовков за пределы окна](image)

1. На вкладке **Вид** в группе **Окно** выберите команду **Закрепить верхнюю строку** кнопки **Закрепить область**. Теперь можно смело прокручивать список, не теряя из виду заголовки строк и столбцов.

Сортировка списков. Excel предоставляет разнообразные способы сортировки диапазонов рабочего листа. Вы можете сортировать строки или столбцы в возрастающем и убывающем порядке, с учётом или без учёта регистра букв.
Отсортируйте список по столбцу **Фамилия** в алфавитном порядке. Для этого:
2. Выделите любую ячейку списка и на вкладке **Данные** в группе **Сортировка и фильтр** нажмите кнопку **Сортировка**.
3. В появившемся окне **Сортировка** (рис. 8.3) выберите сортировку по столбцу **Фамилия**, **Сортировка** – по значению и **Порядок сортировки** – **От A до Я** (в алфавитном порядке).

![Скриншот окна Сортировка](image)

Рис. 8.3. Окно диалога **Сортировка** с заданными параметрами

Список с отсортированными записями по столбцу **Фамилия** показан на рис. 8.4.

<table>
<thead>
<tr>
<th>Фамилия</th>
<th>Имя</th>
<th>Отчество</th>
<th>Табельный номер</th>
<th>Пол</th>
<th>Дата рождения</th>
<th>Отдел</th>
<th>Возраст</th>
</tr>
</thead>
<tbody>
<tr>
<td>Александров</td>
<td>Сергей</td>
<td>Иванович</td>
<td>242</td>
<td>м</td>
<td>29.05.1967</td>
<td>АПС</td>
<td>44</td>
</tr>
<tr>
<td>Вершинин</td>
<td>Виктор</td>
<td>Николаевич</td>
<td>209</td>
<td>м</td>
<td>25.10.1974</td>
<td>ОТД</td>
<td>37</td>
</tr>
<tr>
<td>Колобова</td>
<td>Нина</td>
<td>Ивановна</td>
<td>622</td>
<td>ж</td>
<td>06.11.1969</td>
<td>ОНК</td>
<td>42</td>
</tr>
<tr>
<td>Кротова</td>
<td>Анна</td>
<td>Григорьевна</td>
<td>768</td>
<td>ж</td>
<td>13.03.1980</td>
<td>ОТД</td>
<td>31</td>
</tr>
<tr>
<td>Модяев</td>
<td>Юрий</td>
<td>Васильевич</td>
<td>283</td>
<td>м</td>
<td>18.02.1980</td>
<td>АПС</td>
<td>31</td>
</tr>
<tr>
<td>Михеев</td>
<td>Дмитрий</td>
<td>Викторович</td>
<td>867</td>
<td>м</td>
<td>18.04.1979</td>
<td>ОТД</td>
<td>32</td>
</tr>
<tr>
<td>Морозов</td>
<td>Сергей</td>
<td>Леонидович</td>
<td>555</td>
<td>м</td>
<td>10.12.1972</td>
<td>ОНК</td>
<td>38</td>
</tr>
<tr>
<td>Пирожкова</td>
<td>Мария</td>
<td>Александровна</td>
<td>244</td>
<td>ж</td>
<td>23.06.1981</td>
<td>ОНК</td>
<td>30</td>
</tr>
<tr>
<td>Семеновская</td>
<td>Надя</td>
<td>Александровна</td>
<td>646</td>
<td>ж</td>
<td>09.05.1975</td>
<td>ОТД</td>
<td>36</td>
</tr>
<tr>
<td>Степанова</td>
<td>Раниса</td>
<td>Ивановна</td>
<td>453</td>
<td>ж</td>
<td>08.05.1959</td>
<td>АПС</td>
<td>52</td>
</tr>
<tr>
<td>Щеглов</td>
<td>Александр</td>
<td>Михайлович</td>
<td>118</td>
<td>м</td>
<td>21.06.1979</td>
<td>ОНК</td>
<td>32</td>
</tr>
</tbody>
</table>

![Таблица с отсортированными данными](image)

Рис. 8.4. Отсортированный список

Фильтрация (выборка) данных из списка. Фильтрация, или выборка, – очень частая операция во время работы со списками. Суть ее в том, чтобы отобрать из списка все строки (записи), удовлетворяющие определенным условиям. Условий может быть много, они могут быть простыми и сложными, связанными друг с другом или независимыми. Существует несколько способов фильтрации списков в Excel.
Способ 1. Автофильтр
Отфильтровать список автофильтром – значит скрыть все строки за исключением тех, которых удовлетворяют заданным условиям отбора. Для выполнения такой операции необходимо:

4. Выделить любую ячейку списка и на вкладке Данные в группе Сортировка и фильтр нажать кнопку Фильтр . В первой строке, содержащей заголовки столбцов, появятся кнопки со стрелками – кнопки автофильтра (рис. 8.5).

<table>
<thead>
<tr>
<th>Фамилия</th>
<th>Имя</th>
<th>Отчество</th>
<th>Табельный номер</th>
<th>Пол</th>
<th>Дата рождения</th>
<th>Отдел</th>
<th>Возраст</th>
</tr>
</thead>
<tbody>
<tr>
<td>Александров Сергей Иванович</td>
<td>242</td>
<td>м</td>
<td>29.05.1967</td>
<td>АПС</td>
<td>44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Вершинин Виктор Николаевич</td>
<td>209</td>
<td>м</td>
<td>25.10.1974</td>
<td>СТД</td>
<td>37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Копиная Нина Ивановна</td>
<td>622</td>
<td>ж</td>
<td>06.11.1969</td>
<td>ОНК</td>
<td>42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Копиная Анна Григорьевна</td>
<td>788</td>
<td>ж</td>
<td>13.01.1980</td>
<td>СТП</td>
<td>31</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Рис. 8.5. Список с кнопками автофильтра

Для выборки записей необходимо:

5. Щелкнуть по кнопке автофильтра в заголовке нужного столбца и выбрать из выпадающего списка то, что необходимо показать (рис. 8.6).

После фильтрации обратите внимание на номера выведенных строк: Excel скрыл все строки, не удовлетворяющие заданному условию, а номера отфильтрованных отобразил синим цветом, чтобы напомнить пользователю, что в данный момент он видит неполный список (рис. 8.7).

<table>
<thead>
<tr>
<th>Фамилия</th>
<th>Имя</th>
<th>Отчество</th>
<th>Табельный номер</th>
<th>Пол</th>
<th>Дата рождения</th>
<th>Отдел</th>
<th>Возраст</th>
</tr>
</thead>
<tbody>
<tr>
<td>Александров Сергей Иванович</td>
<td>242</td>
<td>м</td>
<td>29.05.1967</td>
<td>АПС</td>
<td>44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Медведев Юрий Васильевич</td>
<td>283</td>
<td>м</td>
<td>18.02.1980</td>
<td>АПС</td>
<td>31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ступина Раниса Ивановна</td>
<td>453</td>
<td>ж</td>
<td>09.05.1969</td>
<td>АПС</td>
<td>52</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Рис. 8.7. Список с применением фильтра
Чтобы отобразить все записи, нужно нажать на кнопку автофильтра и выбрать строчку Удалить фильтр с «Отдел» или поставить флажок напротив строчки Все (рис. 8.8).

![Рис. 8.8. Снятие параметров фильтрации](image)

Вы можете также использовать автофильтр, чтобы найти заданное число (или процент) наибольших или наименьших элементов в списке. Для этого необходимо щелкнуть по кнопке автофильтра в соответствующем поле и выбрать Числовые фильтры → Первые 10... Откроется окно (рис. 8.9), в котором пользователь может задать количество элементов и выбрать из выпадающих списков их тип – наибольшие или наименьшие.

![Рис. 8.9. Окно Наложение условия по списку](image)

6. Выберите 5 записей с сотрудниками, возраст которых наибольший (рис. 8.10).

![Рис. 8.10. Указание параметров для фильтрации](image)

В итоге получите записи, как показано на рис. 8.11.
Способ 2. Пользовательский автофильр

Мы можем использовать автофильр для выборки записей по более сложным условиям. Допустим, необходимо выбрать из списка строки, где возраст сотрудника лежит в диапазоне от 20 до 55 или меньше/больше определенной величины. Для выполнения такой фильтрации из выпадающего списка поля Возраст необходимо выбрать пункт Числовые фильтры → Настраиваемые фильтр…. Появится окно Пользовательского автофильтра (рис. 8.12).

При помощи выпадающих списков необходимо задать условие отбора и нажать кнопку OK – Excel отобразит только те строки, которые удовлетворяют заданным условиям.

Пользовательский автофильр способен также работать с текстом (в столбцах с текстовыми данными).

Требования к защите лабораторной работы

Для защиты лабораторной работы необходимо уметь:
- осуществлять фильтрацию списков;
- фиксировать строку заголовков списка;
- производить сортировку списка;
- отображать n записей списка, удовлетворяющих условию.

Контрольные вопросы

1. Что такое списки?
2. Перечислите требования к созданию списка.
3. Назовите способы фильтрации списка.
9. РЕШЕНИЕ УРАВНЕНИЙ И СИСТЕМ УРАВНЕНИЙ
СРЕДСТВАМИ EXCEL

Цель работы: научиться использовать средства Excel для решения уравнений и систем уравнений.

Задание к лабораторной работе
1. Прочитать общие сведения о возможностях Excel, связанных с решением математических задач.
2. Выполнить задания, рассматриваемые в лабораторной работе.
3. Выполнить задания по вариантам.
4. Приготовить ответы на контрольные вопросы.

Общие сведения. Существует значительное количество специализированных математических пакетов, таких как MatLab, MathCAD, Matemati-
sa, Maple. Все они охватывают основные разделы математики и позволяют производить подавляющее большинство необходимых математических расчётов. Excel сильно уступает специализированным математическим пакетам, тем не менее большое количество математических задач может быть решено с его помощью.

Средства MS Excel можно применять для решения задач аналитической геометрии, линейной алгебры, теории вероятностей, статистики. Также Excel применяют для решения задач оптимизации и математического анализа.

Задание 1. Решить уравнение \(x^3 - \frac{1}{7} x = 0 \) графически.

Графическим решением уравнения вида \(f(x) = 0 \) является абсцисса точки пересечения графика функции \(y = f(x) \) с осью \(OX \).

Порядок работы
Выберите произвольный диапазон для построения графика, например от \(-5\) до \(5\) с шагом, равным \(0,5\). На этом диапазоне постройте график функции \(y = x^3 - \frac{1}{7} x \). Для этого:

1. В ячейку \(A1 \) внесите имя переменной \(x \), в ячейку \(B1 \) внесите имя переменной \(y \).
2. Начиная с ячейки \(A2 \), получите значения переменной \(x \), при которых будет вычислена функция (рис. 9.1).
3. В ячейку \(B2 \) введите формулу \(=A2^3-1/7*A2 \).
4. Используя маркер автозаполнения, распространите формулу на диапазон \(B3:B22 \).
В итоге вы получите данные для построения графика функции (рис. 9.1).

5. Выделите диапазон A1:B22 и постройте график функции, используя точечный тип диаграммы (рис. 9.1).

Рис. 9.1. Построенный график функции

На построенном графике (рис. 9.1) видно, что корни уравнения находятся в диапазоне от −2 до 2. Чтобы лучше увидеть корни, можно изменить диапазон построения или уменьшить максимальное и минимальное значение по осям и изменить цену основных делений на осях.

В результате форматирования осей видны точки пересечения графика с осью ox (рис. 9.2).

Рис. 9.2. Точки пересечения графика с осью Ox

В итоге графического решения уравнения нашли 2 приближённых корня уравнения и один точный (в результате проверки): \(x_1 \approx -0.4, x_2 = 0, x_3 \approx 0.4 \).

Задание 2. Решение уравнения \(x^3 - \frac{1}{7}x = 0 \) с помощью Подбора параметра.
Требуется решить уравнение вида \(f(x) = 0 \). Нахождение корней уравнения даже в случае алгебраических уравнений выше третьей степени представляет достаточно сложную задачу. В этих случаях единственным путём является приближённое решение.

В Excel для решения уравнений используется удобный и простой для понимания инструмент Подбор параметра. Он реализует алгоритм численного решения уравнения, зависящий от одной переменной.

Процесс решения с помощью процедуры Подбор параметра распадается на два этапа:

а. Задание на рабочем листе ячейки, содержащей переменную решающее уравнения (влияющая ячейка), и ячейки содержащей формулу уравнения (зависимая или целевая ячейка).

б. Ввод адресов влияющей и целевой ячейки в диалоговом окне Подбор параметра и получение ответа (или сообщение о его отсутствии или невозможности нахождения).

К сожалению, с помощью процедуры Подбор параметра могут быть решены только некоторые типы уравнений.

Порядок работы

1. В ячейку A1 внесите ориентировочное значение корня. Ориентировочное значение лучше взять, решив уравнение графически (это уравнение графически уже решили). Если за ориентировочное значение вы возьмёте \(x = 10 \), то ответ может быть неточный или вовсе решений не будет. Поэтому первоначально уравнение лучше решить графически. За ориентировочное значение возьмите 0,5, так как из графического решения видно, что один из корней находится около этого значения. В ячейку B1 внесите левую часть уравнения, используя в качестве независимой переменной ссылку на ячейку A1 (рис. 9.3).

![Рис. 9.3. Ввод данных в ячейки](image)

На рис. 9.4 вы видите значение левой части уравнения при \(x = 0,5 \).

![Рис. 9.4. Значения выражения при \(x = 0,5 \)](image)

2. Выполните команду вкладка Данные \(\rightarrow \) группа Работа с данными \(\rightarrow \) кнопка Анализ «что если» \(\rightarrow \) команда Подбор параметра.
3. В окне Подбор параметра в поле Установить в ячейке мышью укажите B1, в поле Значение с клавиатуры задаём ноль, т. к. правая часть уравнения равна нулю. В поле Изменя значение ячейки укажите A1 (рис. 9.5).

![Рис. 9.5. Окно Подбор параметра](image.png)

4. Нажмите на кнопку OK. Вы получите результат подбора, отображаемый в диалоговом окне Результат подбора параметра (рис. 9.6).

5. Нажмите на кнопку OK, чтобы сохранить полученные значения ячеек, участвовавших в операции.

![Рис. 9.6. Окно Результат подбора параметра](image.png)

В ячейке A1 получили приближённое значение \(x \approx 0,37827 \). При этом погрешность решения (значение правой части уравнения) – вместо 0 в ячейке B1 получено 8,74E-05.

Таким образом, при значении \(x \approx 0,37827 \) правая часть уравнения приближается к нулю (рис. 9.7).

![Рис. 9.7. Данные, полученные в результате подбора параметра](image.png)

Одно из решений уравнения \(x \approx 0,378 \). Если зададим другое приближение к корню, например \(-0,5\), то получим второй корень.

Задание 3. Решить графически систему уравнений \(\begin{cases} x^2 + y^2 = 9 \\ y + x = 0 \end{cases} \).

Графическим решением системы уравнений являются координаты точек пересечения графиков функций.
Порядок работы

Для решения данной задачи необходимо выразить y из первого уравнения системы и из второго.

\[y_1 = \sqrt{9 - x^2} \]
\[y_2 = -\sqrt{9 - x^2} \]
\[y_3 = -x \]

1. На одной системе координат нужно построить три графика функции y_1, y_2, y_3. Диапазон для построения выбирайте произвольно. В рассматриваемом случае возьмите от -3 до 3, так как окружность находится в центре координат и её радиус равен 3 (рис. 9.9).

![Графическое решение системы уравнений](image)

Рис. 9.9. Графическое решение системы уравнений

Решения системы уравнений найдены (рис. 9.9). Они являются приближёнными, $x_1 \approx -2,2; y_1 \approx 2,2; x_2 \approx 2,2; y_2 \approx -2,2$.

Задание 4. Решить систему линейных уравнений \[
\begin{align*}
3x + 2y &= 7 \\
4x - 5y &= 40
\end{align*}
\]

Существует несколько способов решения систем линейных уравнений. Один из способов состоит в том, чтобы найти обратную матрицу коэффициентов при неизвестных и умножить её на вектор свободных членов.

Обратите внимание, что таким способом решаем только систему n линейных уравнений с n неизвестными.

Для решения систем используются функции МОБР и МУМНОЖ из категории Математические.

!!! Если результатом работы функции является массив, то для получения ответа нужно нажимать комбинацию клавиш CTRL+SHIFT+ENTER.
Порядок работы
1. В ячейки таблицы Excel введите элементы матрицы, составленной из коэффициентов при неизвестных и вектор свободных членов (рис. 9.10).

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>-5</td>
<td></td>
<td>40</td>
</tr>
</tbody>
</table>

Рис. 9.10. Ввод данных

2. Выделите диапазон A4:B5 под обратную матрицу.
3. Вызовите из категории Математические функцию МОБР.
4. В окне Аргументы функции в поле Массив введите диапазон ячеек с коэффициентами при неизвестных (рис. 9.11).
 В окне Аргументы функции кнопку ОК нажимать не надо.
5. Нажмите комбинацию клавиш CTRL+SHIFT+ENTER (сначала нажмите CTRL+SHIFT, а потом ENTER).

Рис. 9.11. Значения аргументов функции МОБР

Вы получили значение обратной матрицы (рис. 9.12).

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>-5</td>
<td></td>
<td>40</td>
</tr>
<tr>
<td>4</td>
<td>0.217391</td>
<td>0.086957</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.173913</td>
<td>-0.13043</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Рис. 9.12. Элементы обратной матрицы

Теперь нужно обратную матрицу умножить на вектор свободных членов. Для этого:
6. Выделите диапазон D4:D5 под ответы и вызовите функцию МУМНОЖ из категории Математические.
7. Введите аргументы функции, как показано на рис. 9.13. Для получения ответа нажмите комбинацию клавиш CTRL+SHIFT+ENTER.
Если в ячейках, где должны быть получены значения, вы получили одно значение, а не массив значений (рис. 9.14), то поставьте курсор в строку формул и нажмите комбинацию клавиш CTRL+SHIFT+ENTER ещё раз. Отсутствие фигурных скобок в строке формул означает, что комбинация CTRL+SHIFT+ENTER не была нажата.

В итоге должны быть получены ответы: \(x = 5, y = -4 \) (рис. 9.15).

Варианты для самостоятельной работы представлены в таблице 2 приложения.

Задание для самостоятельно работы
1. Решить уравнение двумя способами.
2. Решить систему нелинейных уравнений графически.
3. Решить систему линейных уравнений матричным способом.

Контрольные вопросы

1. Какими способами можно решить уравнение в Excel?
2. Что является графическим решением уравнения вида \(f(x) = 0 \)?
3. Как графически решить уравнение вида \(f(x) = a, f(x) = g(x) \)?
4. Как решить уравнение, используя инструмент Подбор параметра?
5. Что является графическим решением системы уравнений?
6. Как решить систему линейных уравнений матричным способом?
7. Если результатом работы функции является массив, то какую комбинацию клавиш нужно нажимать для получения ответа?
10. ВЫЧИСЛЕНИЕ ЗНАЧЕНИЙ ФУНКЦИЙ В МАТНЦАД

Цели работы: 1) освоить основные приёмы по вычислению функций в MathCAD; 2) научиться вычислять значения кусочно заданных функций средствами MathCAD.

Задание к лабораторной работе
1. Выполнить задания, рассмотренные в лабораторной работе.
2. Выполнить задание по вариантам.
3. Подготовить ответы на контрольные вопросы.

Задание 1. Вычислить значение функции
\[z = \frac{x^2 + \sin^3 3x}{a} + b \quad a = 2.5 \quad b = -1 \]

Порядок работы
1. Откройте приложение MathCAD.

Для сопровождения работы текстом лучше использовать текстовый режим. MathCAD позволяет создавать всевозможные комментарии и качественно оформлять решенные задачи.

2. Для ввода текстовой области выполните команду Вставка → Регион текста (Text Region) или используйте горячую клавишу [“] (при этом курсор ввода должен располагаться на чистом участке документа). Появится специальная рамка, а курсор ввода приобретёт вид красной вертикальной линии.

Наберите текст, представленный на рис. 10.1.

Лабораторная работа

Задание № 1

Рис. 10.1. Текст на страницы документа

В MathCAD курсор изображается в виде красного крестика.

Для выравнивания различных регионов друг относительно друга в MathCAD существует специальная команда Выровнять регионы (Align Regions) из пункта меню Формат (Format). Возможны два типа выравнивания: по верхнему краю, по левому краю. Также можно использовать специальные кнопки на панели инструментов Стандартная (кнопки активны, когда выделены регионы).
3. Выделите текстовые регионы, используя левую кнопку мыши (рис. 10.2).

![Лабораторная работа](image1)

Задание № 1:

Рис. 10.2. Выделение текстовых регионов

4. Нажмите кнопку для вертикального выравнивания . В итоге все регионы будут выровнены по вертикали.

Если текст, указанный в лабораторной работе, вы набирали в одной области (рис. 9.3), то команды выравнивания будут неактивны, так как вы работаете с одной областью.

![Лабораторная работа](image2)

Рис. 10.3. Область с текстом

5. Скопируйте задание из лабораторной работы в документ MathCAD (рис. 10.4),

![Лабораторная работа](image3)

Рис. 10.4. Скопированное задание

Для вычисления значения функции понадобится панель Калькулятор.

6. Чтобы добавить панель, выполните команду **Вид → Панели инструментов → Математика**. Откроется панель Математические (рис. 10.5).

![Математические](image4)

Рис. 10.5. Панель Математические

7. На панели Математические откройте панель Калькулятор .
На этой панели расположены арифметические операторы, цифры от 0 до 9, некоторые наиболее распространенные функции и математические константы, а также операторы вывода и присвоения (рис. 10.6).

![Калькулятор]

Рис. 10.6. Панель Калькулятор

Зададим значения для констант а и b. Для этого:

8. Наберите имя константы а и введите оператор присвоения := с панели Калькулятор.

9. В местозаполнитель введите значение константы а := 2.5. Обратите внимание, что в качестве разделителя целой и дробной части используется точка.

10. Ниже или рядом задайте значение для константы b.

а := 2.5
б := -1

Задайте функцию пользователя для вычисления значения указанной функции. Для задания функции пользователя нужно выполнять следующую последовательность действий:

11. Введите имя функции z.

а := 2.5
б := -1

12. После непосредственного имени функции следует ввести скобки (используя клавиатуру или команду панели Калькулятор), в которых через запятую следует задать все переменные, от которых зависит функция.
13. Введите оператор присвоения \(:= \).

\[
\begin{align*}
a &= 25 \\
b &= -1 \\
z(x) &= y
\end{align*}
\]

На месте черного маркера справа от введённого оператора присвоения задайте вид вашей функции (рассматривается ниже). В выражение вашей функции могут входить как непосредственно переменные, так и другие встроенные и пользовательские функции. Рассмотрим подробно набор функций.

14. На панели Калькулятор выберите команду \(x^2 \).

15. В местозаполнитель введите \(x \).

16. Используя клавишу пробел, выделите все выражение \(x^2 \).

17. Введите знак «+», используя клавиатуру или панель Калькулятор.

18. На панели Калькулятор вызовите функции Синус, используя команду \(\sin \).

\[
z(x) := x^2 + \sin(y)
\]

!!! Все функции в MathCAD набираются строчными буквами.

19. В местозаполнитель введите выражение \(3x \) (не забудьте поставить знак умножения).

\[
z(x) := x^2 + \sin(3 \cdot y)
\]

20. Используя клавишу пробел, выделите функцию \(\sin \).

\[
z(x) := x^2 + \sin(3 \cdot x)
\]
21. Нажмите на панели Калькулятор команду возведения в степень x^y.

$$z(x) := x^2 + \sin(3\cdot x)$$

22. В местозаполнитель введите степень 3.
23. Выделите выражение $x^2 + \sin^3 3x$.

$$z(x) := x^2 + \sin^3 (3\cdot x)$$

24. Выберите команду деления / на панели Калькулятор или нажмите клавишу / на клавиатуре.

$$z(x) := \frac{x^2 + \sin(3\cdot x)^3}{a}$$

25. Введите константу a и выделите всю дробь, используя пробел.

$$z(x) := \frac{\frac{x^2 + \sin(3\cdot x)^3}{a}}{b}$$

26. Введите «+» и добавьте константу b.

27. Для получения ответа при $x = 2,5$ наберите ниже $z(2,5)$.
28. Поставьте знак «равно» с панели Калькулятор или с клавиатуры.

$$z(2,5) = 1.83$$

При $z = 2,5$ значение функции равно 1,83. Чтобы определить значение функции при другом значении переменной, замените 2,5 на другое значение.

Задание 2. Вычислить значение кусочно заданной функции.

$$y = \begin{cases} x^2 + b, & x \geq 0 \\ -ax, & x < 0 \end{cases} \quad b = -2.6 \quad a = 8$$

Для решения задач разветвляющейся структуры в MathCAD используется логическая функция if. Для её вызова нужно выполнить команду Вставка → Функция и в окне Вставка функции выбрать функцию или нажать кнопку $f9$ на Стандартной панели инструментов (рис. 10.10).
Общий вид функции `if`: `if (α, β1, β2)`, где
`α` — логическое выражение;
`β1` — выражение, возвращаемое, когда `α` истино;
`β2` — выражение, возвращаемое, когда `α` ложно.

В MathCAD для записи логических выражений используется логическая панель (булева алгебра) (рис. 10.11), на ней располагаются логические операторы.

\[
\begin{array}{c}
\wedge \quad \text{(and)}
\end{array}
\]
\[
\vee \quad \text{(or)}
\]

В MathCAD составные условия вида \(-5 \leq x \leq 2\) можно записывать в общепринятой форме или используя логический оператор `\wedge`.

Рассмотрим решение задания 2.
Введём обозначения для функций: \(y_1 = x^2 + b\), \(y_2 = -ax\).
1. Задайте значения для констант.
\[
a := 8
\]
\[
b := -2.6
\]
2. Задайте функции \(y_1\) и \(y_2\).
\[
a := 8
\]
\[
b := -2.6
\]
\[
y_1(x) := x^2 + b
\]
\[
y_2(x) := -ax
\]
3. Задайте функцию \(y\), используя функцию `if`.
\[
y(x) := if((0,0,1))
\]
4. Осуществите ввод аргументов функции.
\[
y(x) := if(x \geq 0, y_1(x), y_2(x))
\]
5. Выведите значения функций y_1, y_2, y

$$y_1(3.5) = 9.65$$
$$y_2(3.5) = -28$$
$$y(3.5) = 9.65$$

Значение функции y при $x = 3.5$ равно 9.65.

Задание 3. Вычислить значение функции

$$z = \begin{cases}
 x^2 - 5, & x > 2 \\
 -x, & -5 \leq x \leq 2 \\
 -x, & x < -5
\end{cases}$$

Порядок работы

1. Задайте функции z_1, z_2, z_3. Результатирующую функцию z наберите, как показано ниже.

$$z_1(x) := x^2 - 5$$
$$z_2(x) := -x$$
$$z_3(x) := x$$

$$z(x) := if(x > 2, z_1(x), if(x > 0, 0, 1))$$

Последним аргументом функции if будет являться вложенная функция if.

2. Введите значения аргументов вложенной функции и выведите ответ.

$$z(x) = if(x > 2, z_1(x), if(-5 \leq x \leq 2, z_2(x), z_3(x)))$$

$$z(1) = -4$$
$$z(-1) = 1$$

Значение функции z при $x = -1$ равно 1.

Варианты для самостоятельной работы представлены в таблицах 1 и 3 приложения.

Задание для самостоятельной работы

1. Вычислить значение функции.
2. Вычислить значение кусочно заданной функции.

Контрольные вопросы

1. Какое расширение имеет файл, созданный в MathCAD?
2. Как задать функцию пользователя?
3. Как вычислить значение функции от нескольких переменных?
4. Как вызвать панель «Математика»?
5. Как вставить текстовую область?
6. Что является разделителем целой и дробной части числа?
7. Как вызвать встроенные функции?
8. Объясните ошибку в набранном в MathCAD выражении:
 \[
 A := 24
 \]
 \[
 s(x) := x^2 + a
 \]
9. Какая функция позволяет реализовать разветвляющуюся структуру в MathCAD?
10. Общий вид функции \textit{if} в MathCAD.
11. ПОСТРОЕНИЕ ГРАФИКОВ ФУНКЦИЙ В MATHCAD

Цель работы: научиться строить графики в MathCAD.

Задание к лабораторной работе
1. Выполнить задания, рассматриваемые в лабораторной работе.
2. Выполнить задания по вариантам.
3. Подготовить ответы на контрольные вопросы.

Понятие ранжированной переменной. В MathCAD ранжированную (от англ. range – ряд) переменную используют при проведении итерационных (повторяющихся) вычислений и при построении графиков функций.

Задание 1. Получить все значения x из диапазона \(x \in [-2; 5] \), \(h = 1 \).

Порядок работы

1. Введите имя переменной и оператор присвоения \(x := \).
2. Поставьте курсор в маркер значения переменной и на панели работы с матрицами (рис. 11.1) нажмите кнопку \(m \ldots n \).

![Рис. 11.1. Панель работы с матрицами](image)

Будет введена заготовка в виде двух местозаполнителей, разделённых точками.

\(x := \cdot \cdot \cdot \)

!!! Задавать оператор ранжированной переменной, ввести с клавиатуры последовательно две точки, нельзя.

3. В левый маркер заготовки ранжированной переменной введите её первое значение -2, в правый – последнее 5.

\(x := -2 .. 5 \)

4. Выведите результат, поставив знак «==» после имени переменной.
Задание 2. Получить все значения x из диапазона $x \in [-2; 5)$, $h = 0.5$.
Порядок работы

1. Для выполнения этого задания в левый местазаполнитель нужно ввести выражение $-2, (-2 + 0.5)\ldots$.

В итоге вы должны получить $x := -2, (-2 + 0.5)\ldots$.

2. Выведите результат.

Задание 3. Вычислить значение функции $y = ax^2 + bx - 6$, $x \in [-5; 5]$, $h = 0.5$, $a = 0.5$, $b = -3$ и построить графики функций y и $y = \cos x$.

Порядок работы

1. Задайте значения констант a, b и значение ранжированной переменной x.

2. Задайте функцию $y(x) := a \cdot x^2 + b \cdot x - 6$

3. Выведите значения переменной и функции на отрезке (если требуется только построить график функции, то значения выводить необязательно).
Перейдём к построению графика. Построение разнообразных графиков – одна из сильнейших сторон MathCAD. Все основные типы графиков и инструменты работы с ними расположены на рабочей панели График семейства Математика (рис. 11.2).

Рис. 11.2. Панель работы с графиками

4. Установите курсор в рабочей области, где будет располагаться график (график обязательно должен располагаться ниже строк, где заданы функция и переменная).

5. На панели График нажмите кнопку для построения двухмерного графика. Появится графическая область (рис. 11.3).

Рис. 11.3. Область для построения графика

6. В нижний маркер, расположенный под внутренней рамкой графической области, введите имя переменной x.

7. В маркер, расположенный слева от внутренней рамки, введите имя функции или функцию. Чтобы увидеть график, щёлкните мышкой по рабочей области вне области построения графика (рис. 11.4).

Рис. 11.4. Построенный график
Рассмотрим графическую область и её элементы. Для визуализации всех элементов нужно выделить графическую область щелчком левой кнопки мыши.

Чтобы изменить значения максимальных и минимальных величин (рис. 11.5) координат узловых точек, удалите старые величины и введите новые. Изменение пределов по оси абсцисс вызывает автоматический пересчёт крайних значений по оси ординат, но если вы переопределите область по оси ординат, то область изменения переменной останется прежней.

Рис. 11.5. Графическая область с элементами

8. Измените значения максимальных и минимальных величин координатных узлов точек, как показано на рис. 11.5.

Перейдём к выполнению второй части задания 3.
9. Задайте функцию $y1 = \cos x$. Вывод значений функции $y1$ производить необязательно.

```
a := 0.5
b := -3
x := -5, (-5 + 0.5):5
y(x) := a*x^2 + b*x - 6
y1(x) = \cos(x)
```

<table>
<thead>
<tr>
<th>x</th>
<th>$y(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>-5</td>
<td>21.5</td>
</tr>
<tr>
<td>-4.5</td>
<td>17.625</td>
</tr>
</tbody>
</table>

10. Установите курсор в графической области после имени функции $y(x)$ (рис. 11.6) и выделите её пробелом.
11. Нажмите на клавиатуре клавишу «–», при этом курсор опустится на строчку ниже и появится чистый маркер (рис. 11.7).

12. В появившийся маркер введите выражение для новой функции или имя функции (рис. 11.8).

Для открытия окна форматирования можно (рис. 11.9):
– выполнить двойной щелчок левой клавишей мыши по области графика;
– выполнить команду Формат График → График X-Y…;
– открыть пункт Формат контекстного меню графика.
Рис. 11.9. Окно Форматирование выбранного графика X-Y

13. Установите пересечение осей по центру (рис. 11.11).

Рис. 11.11. Установление параметра пресечения осей по центру

При помощи второй вкладки окна Форматирование – Трассировка можно произвести настройку вида кривой.

14. Измните цвет линий графиков и толщину (кривая 1, кривая 2) (рис. 11.12).
Рис. 11.12. Изменение формата кривых
Также можно добавить легенду и ввести названия для графиков (рис. 11.13).

Рис. 11.13. Ввод названий для кривых
На рис. 11.14 показаны оси в одинаковом масштабе.

Рис. 11.14. Задание осей в одинаковом масштабе
Задание 4:

а. Построить график результирующей функции \(w \) на отрезке с определённым шагом \(w = \begin{cases} v^2 & v \leq 5 \\ -v & 5 < v \leq 10 \\ 1 & v > 10 \end{cases} \ v \in [0; 15] \Delta v = 2.5.

б. Построить на одной системе координат 4 графика функций (3 вспомогательных и один результирующий).

Выполнение задания показано ниже.

\[v = 0, (0 + 2.3) \ldots 15 \]
\[w_1(v) = v^2 \]
\[w_2(v) = -v \]
\[w_3(v) = 1 \]
\[w(v) = \text{if}(v \leq 5, w_1(v), \text{if}(v > 10, w_3(v), w_2(v))) \]

<table>
<thead>
<tr>
<th>(v)</th>
<th>(w_1(v))</th>
<th>(w_2(v))</th>
<th>(w_3(v))</th>
<th>(w(v))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2.5</td>
<td>6.25</td>
<td>-2.5</td>
<td>1</td>
<td>6.25</td>
</tr>
<tr>
<td>5</td>
<td>25</td>
<td>-5</td>
<td>1</td>
<td>25</td>
</tr>
<tr>
<td>7.5</td>
<td>56.25</td>
<td>-7.5</td>
<td>1</td>
<td>-7.5</td>
</tr>
<tr>
<td>10</td>
<td>100</td>
<td>-10</td>
<td>1</td>
<td>-10</td>
</tr>
<tr>
<td>12.5</td>
<td>156.25</td>
<td>-12.5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>225</td>
<td>-15</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Варианты для самостоятельной работы даны в таблице 4 приложения. Задание для самостоятельной работы. Построить график функции.
Контрольные вопросы
1. Как задать ранжированную переменную?
2. Как построить график функции?
3. Как на одной системе координат построить несколько графиков функций?
4. Как произвести форматирование осей?
5. Как произвести форматирование графиков?
12. РЕШЕНИЕ УРАВНЕНИЙ И СИСТЕМ УРАВНЕНИЙ В MATHCAD

Цель работы: научиться решать уравнения и системы уравнений в MathCAD.

Задание к лабораторной работе
1. Выполнить задания, рассмотренные в лабораторной работе.
2. Выполнить задания по вариантам.
3. Подготовить ответы на контрольные вопросы.

Задание 1. Решить уравнение \(x^3 - \frac{1}{7}x = 0 \).

Для графического решения уравнения нужно построить график функции
\(f(x) = x^3 - \frac{1}{7}x \) и найти точку пересечения графика функции с осью абсцисс.

При решении уравнения \(x^3 - \frac{1}{7}x = 0 \) графическим способом нужно построить график функции (рис. 12.1) (диапазон выбран от \(-5\) до 5).

\[
\begin{align*}
x & \equiv -5, (-5 + 0.5) \ldots 5 \\
f(x) & \equiv x^3 - \frac{1}{7}x
\end{align*}
\]

Рис. 12.1. График функции

Если при решении уравнения графическим способом не совсем точно видны точки пересечения графика с осью абсцисс, то можно изменить диапазон построения либо увеличить масштаб.

Также чем меньше выбран шаг изменения переменой, тем точнее будет построен график.

Изменим диапазон построения графика от \(-1\) до 1 (рис. 12.2).
\[x := -1, (-1 + 0.1) .. 1 \]
\[f(x) := x^3 - \frac{1}{7} x \]

Рис. 12.2. График с изменённым диапазоном построения

Изменение диапазона не привело к желаемому результату. Используем инструмент масштаб (zoom) для увеличения фрагмента графика, где располагаются корни.

Для этого:
1. Выделите область построения и вызовите контекстное меню.
2. Выберите пункт Масштаб графика X-Y.
3. Удерживая левую кнопку мыши, выделите фрагмент кривой, требующий увеличения.
4. Нажмите кнопку масштаб (zoom) в окне Масштаб графика X-Y, и выделенный фрагмент займёт всю область (рис. 12.3).

Рис. 12.3. Применение масштабирования

В результате масштабирования более точно будут видны точки пересечения (рис. 12.4, рис. 12.5).
Рис. 12.4. Результат масштабирования

Рис. 12.5. Пересечение графика с осью ох

Корни уравнения: $x_1 \approx -0.37, \quad x_2 = 0, \quad x_3 \approx 0.37$

Для численного поиска решений алгебраических уравнений используется функция root (корень).

1. Функция root на интервале приближений. Используется, если известен интервал, в котором находится корень.

 $\text{root}(f(x), x, a, b)$

 $f(x)$ – функция.

 x – определяющая переменная.

 a, b – границы интервала. Значения функции на концах интервала должно быть противоположных знаков.
\[f(x) = x^3 - \frac{1}{7}x \]

\[\text{отв1} := \text{root}(f(x), x, -0.9, -0.16) \]
\[\text{отв1} = -0.378 \]

\[\text{отв2} := \text{root}(f(x), x, -0.2, 0.2) \]
\[\text{отв2} = 0 \]

\[\text{отв3} := \text{root}(f(x), x, 0.2, 0.5) \]
\[\text{отв3} = 0.378 \]

2. Функция root с начальной точкой приближения
\[\text{root}(f(x), x) \]

\(f(x) \) – функция

\(x \) – имя переменной функции

До задания функции нужно задать начальное значение для \(x \). Начальное приближение можно задать интуитивно или построив график.

\[f(x) := x^3 - \frac{1}{7}x \]
\[x := -0.5 \]

\[\text{отв1} := \text{root}(f(x), x) \]
\[\text{отв1} = -0.378 \]

\[\chi := 0.1 \]

\[\text{отв2} := \text{root}(f(x), x) \]
\[\text{отв2} = 1.862 \times 10^{-11} \]

\[\chi := 0.5 \]

\[\text{отв3} := \text{root}(f(x), x) \]
\[\text{отв3} = 0.378 \]

Ответы совпали с графическим решением.

Решение систем линейных уравнений

1. Матричный способ

A – матрица, составленная из коэффициентов при неизвестных.

B – вектор свободных членов.
\[X = A^{-1}B \]

Для нахождение обратной матрицы используется оператор \(A^{-1} \) с панели Работа с матрицами.

2. Функция \texttt{lsolve(A,B)}
\(A \) – матрица, составленная из коэффициентов при неизвестных.
\(B \) – вектор свободных членов.

3. Вычислительный блок \textit{GIVEN-find}

Для решения нужно:
– определить начальное приближение для каждой переменной;
– ввести оператор \textit{Given};
– ниже оператора занести систему в алгебраическом виде (используя знак логического равенства, если необходимо);
– найти решение, используя функцию \textit{find(x1, x2, ...)}.

Ниже представлены способы решения системы линейных уравнений

\[
\begin{align*}
 x + 2y + 5z &= -9 \\
 x - y + 3z &= 2 \\
 3x - 6y - z &= 25 \\
\end{align*}
\]

Способ 1

\[A = \begin{pmatrix} 1 & 2 & 3 \\ 1 & -1 & 3 \\ 3 & -6 & -1 \end{pmatrix}, \quad B = \begin{pmatrix} -9 \\ 2 \\ 25 \end{pmatrix} \]

\[X := A^{-1} \cdot B. \]

\[X = \begin{pmatrix} 2 \\ -3 \\ -1 \end{pmatrix} \]

Способ 2

\[X1 := \texttt{lsolve}(A, B) \]

\[X1 = \begin{pmatrix} 2 \\ -3 \\ -1 \end{pmatrix} \]

Способ 3. !!!Знак равно в блоке \textit{GIVEN} ставится с логической панели.
\[
x = -1 \quad y = 0 \quad z = 3
\]

GIVEN
\[
x + 2y + 3z = -9 \\
x - y + 3z = 2 \\
3x - 6y - z = 25
\]

\[
\text{find}(x, y, z) = \begin{pmatrix}
2 \\
-3 \\
-1
\end{pmatrix}
\]

Варианты для самостоятельной работы представлены в таблице 2 приложения.

Задание для самостоятельной работы

1. Решить уравнение:
 a) графически;
 b) функцией *root* на интервале приближений;
 c) функцией *root* с начальной точкой приближения.

2. Решить систему нелинейных уравнений:
 a) графически;
 b) блоком *GIVEN-find*.

3. Решить систему линейных уравнений:
 a) матричным способом;
 b) функцией *lsolve*;
 c) блоком *GIVEN-find*.

Контрольные вопросы

1. Перечислите способы решения уравнений в MathCAD.
2. Перечислите способы решения систем нелинейных уравнений в MathCAD.
3. Перечислите способы решения линейных уравнений в MathCAD.
13. СОЗДАНИЕ СХЕМ В РЕДАКТОРЕ ДЕЛОВОЙ И ИНЖЕНЕРНОЙ ГРАФИКИ MS VISIO

Цель работы: освоить основные приёмы работы в графическом редакторе MS Visio.

Задание к лабораторной работе
1. Ознакомиться с общими сведениями о приложении MS Visio.
2. Выполнить задание, предложенное в лабораторной работе.
3. Ознакомиться с требованиями к защите лабораторной работы.
4. Подготовить ответы на контрольные вопросы.

Общие сведения. Microsoft Visio 2003 – профессиональный редактор инженерной и деловой графики. Предназначен для быстрой и качественной разработки графических документов любой сложности. С его помощью можно создавать технические проекты, модели, диаграммы и различные чертежи. Кроме того, программа позволяет создавать блок-схемы, различные расписания, маркетинговые диаграммы, карты компаний и многое другое.

MS Visio – незаменимый помощником школьников, студентов, инженеров, деловых людей и всех тех, кому необходимо получить быстро и качественно итоговый результат.

Задание. Создать схему по образцу (рис. 13.1).

Рис. 13.1. Схема
Порядок работы

1. Для открытия программы воспользуйтесь ярлыком на Рабочем столе или откройте её через главное меню Windows (Пуск → Программы → Microsoft Office → MS Office Visio 2003). При открытии приложения открывается окно Choose Drawing Type, где предлагается выбрать тип рисунка (рис. 13.2).

![Choose Drawing Type in MS Visio](image)

Рис. 13.2. Окно MS Visio

2. Тип рисунка выбирать не будем, поэтому закройте окно Choose Drawing Type (рис. 13.3).

5 Обычно при инсталляции программа установки автоматически добавляет Visio в меню Пуск, в папку Office.

Страница Visio-документа является основным рабочим пространством для разработки документов. Visio-документ может содержать неограниченное количество таких страниц. Это позволяет собирать в один файл несколько графических изображений, тематически связанных между собой, причём каждая страница может иметь отличные от других параметры.

4. Откройте трафареты, которые понадобятся для создания схемы, выполнив команды:
1. File \(\rightarrow\) Shapes \(\rightarrow\) Block Diagram \(\rightarrow\) Bloks.
2. File \(\rightarrow\) Shapes \(\rightarrow\) Flowchart \(\rightarrow\) Basic Flowchart Shapes.
3. File \(\rightarrow\) Shapes \(\rightarrow\) Visio Extras \(\rightarrow\) Connectors.

В левой части окна приложения трафареты отображаются, как показано на рис. 13.5.

Рис. 13.5. Заголовки трафаретов

5. Откройте трафарет Basic Flowchart Shapes, щелкнув мышкой по его заголовку (рис. 13.6).

Рис. 13.6. Открытый трафарет Basic Flowchart Shapes

6. Выполните команду View \(\rightarrow\) Size & Position Window. Появившееся окно позволит управлять размером и расположением фигуры, текстовых элементов на странице (рис. 13.7).
7. Задайте масштаб страницы 75 %.
8. Удерживая левую кнопку мыши, перенесите фигуру Process на страницу (рис. 13.8).

9. Для фигуры установите ширину и высоту 40 и 40 мм соответственно (рис. 13.9).

10. Выделите фигуру и выполните команду Format → Fill. В окне Fill установите цвет заливки фигуры (рис. 13.10).
Изменять цвет заливки фигур также можно, используя соответствующую команду на панели инструментов Стандартная.

Рис. 13.10. Окно Fill

11. Создайте на странице ещё одну фигуру Process и установите для неё ширину и высоту 30 и 30.
12. Установите цвет фигуры более светлого оттенка, чем у предыдущей.

Измените цвет границ фигур, чтобы он совпадал с цветом самой фигуры. Для этого:

13. Выделите фигуру (рис. 12.11).

Рис. 13.11. Выделенная фигура

15. В окне форматирования *Line* из выпадающего списка *Color* задайте цвет линии, соответствующий цвету заливки фигуры (рис. 13.13).

16. Измените цвет границы у второй фигуры.

Измените форму углов у меньшей фигуры. Для этого:
17. Вызовите контекстное меню фигуры и выберите команду *Line*…
18. Выберите вариант скругления углов (4 mm), как показано на рис. 13.14.
В итоге фигура должна выглядеть так, как показано на рис. 13.15.

![Изменённая фигура](image)

Рис. 13.15. Изменённая фигура

Добавим текст «MCH» к меньшей фигуре. Для этого:
19. На панели инструментов Стандартная нажмите кнопку Text Tool 📄.
20. Щелкните по фигуре и введите текст (рис. 13.16).

![Ввод текста](image)

Рис. 13.16. Ввод текста

21. Используя панель инструментов Форматирование, измените размер шрифта, начертание (рис. 13.17, 13.18).

![Панель форматирования](image)

Рис. 13.17. Панель форматирования

![Отформатированный текст](image)

Рис. 13.18. Отформатированный текст

Обратите внимание, что курсор имеет вид крестика с листком. Это означает, что сейчас активен режим ввода текста. В этом режиме вы не сможете выделять фигуры для проведения действий над ними, кроме ввода текста.
22. Выйдите из режима ввода текста, нажав инструмент Pointer Tool 🌡 на панели инструментов Стандартная.
23. Выделите мышкой большую фигуру, нажмите клавишу Ctrl и выделите меньшую фигуру (рис. 13.19).

![Рис. 13.19. Выделение фигур](image1.png)

24. Выполните команду пункт меню Shape → Align Shapes.
25. Откроется окно выравнивания фигур (рис. 13.20).

![Рис. 13.20. Окно выравнивания фигур Align Shapes](image2.png)

Нам нужно, чтобы меньшая фигура была выравнена по центру большей. Поэтому вы первой выделили большую фигуру, то есть относительно её будет происходить выравнивание.
26. Нажмите кнопки Выравнивание по центру фигуры как по горизонтали, так и по вертикали.

Фигуры должны располагаться так, как показано на рис. 13.21.
Для такого расположения фигур можно также было установить одинаковые координаты для центров фигур.

27. Выделите сначала большую фигуру и в окне Size and Position посмотрите на координаты центра фигуры (X, Y), затем выделите меньшую фигуру. Вы увидите, что координаты центров совпадают.

Сгруппируйте созданные фигуры. Для этого:

28. Выделите мышкой фигуры и выполните команду пункт меню Shape → Grouping → Group (рис. 13.22).

![Выбор команды группировки](image.png)

Рис. 13.22. Выбор команды группировки (Group)

29. Выделите сгруппированную фигуру и скопируйте её, используя команды Copy и Paste пункта меню Edit (или комбинации клавиш) (рис. 13.23).

![Скопированная фигура](image.png)

Рис. 13.23. Скопированная фигура
30. Сделайте активным инструмент для ввода текста и измените текст в скопированной фигуре на «ICH2» (рис. 13.24).

Рис. 13.24. Изменённый текст в фигуре

Соединим фигуры линией. Для этого можно использовать трафареты Connectors. В создаваемой схеме достаточно будет использовать соединитель с панели инструментов Стандартная (рис. 13.25).

Рис. 13.25. Соединитель

Фигуры между собой соединяются по точкам соединения (синие крестик). В программе есть возможность добавлять дополнительные точки соединение кроме тех, которые установлены по умолчанию. Для создаваемой схемы дополнительные точки не нужны.

31. Выберите инструмент Соединитель.
32. Проведите линию соединения от одной точки до другой, как показано на рис. 13.26.

Рис. 13.26. Соединение по точкам

33. Выйдите из режима соединения фигур, нажав на кнопку панели инструментов Стандартная.

Изменим толщину и цвет созданной линии. Для этого:
34. Выделите линию.
35. Выполните команду Line пункт меню Format (рис. 13.27).
36. Измните толщину линии, задав значение для параметра Weight (например, 13).
37. Измените цвет.
Если при построении линии соединения на концах линии появились стрелки, то уберите их, изменив параметры Begin и End для концов линии (Line ends).

Рис. 13.27. Форматирование линий соединения

Положение фигур на странице можно менять, для этого фигуры нужно выделить, используя мышь, и переместить в нужное место страницы.
Добавьте текст к схеме как показано на рис. 13.28. Для этого:

38. Включите инструмент Набора текста.
39. Щелкните мышкой на свободной области страницы и наберите текст.
40. Используя левую кнопку мыши, расположите текст между блоками схемы.

Рис. 13.28. Добавление текста вне блока
Далее завершите создание схемы самостоятельно. Перед этим ознакомьтесь с некоторыми особенноностями при создании схемы.

Рассмотрим создание блока в схеме (рис. 13.29).

Рис. 13.29. Блок

Блок создаётся при помощи поворота фигуры. Если вы создадите фигуру и добавите текст рассмотренным выше способом, то при повороте фигуры вместе с блоком будет поворачиваться текст.

В такой ситуации можно поступить следующим образом.

41. Создайте фигуру (рис. 13.30).

Рис. 13.30. Созданная фигура

42. Поверните её, используя маркер поворота, или укажите угол поворота Angle в окне Size and Position (рис. 13.31).

Рис. 13.31. Указание угла в окне Size and Position

43. На свободном месте страницы добавьте блок текста (рис. 13.32).
44. Расположите блок текста по центру фигуры (рис. 13.33), используя окно горизонтального и вертикального выравнивания Align.

45. Проведите группировку блока и текста.

Рассмотрим создание фрагмента схемы, показанного на рис. 13.34.

Особенность фрагмента состоит в том, что необходимо провести линию не в точке соединения фигуры.

Будем использовать инструмента Line Tool, расположенный на панели Drawing (View → ToolBar → Drawing).

Если не получается провести линию строго горизонтально (рис. 13.35), то можно применить для выравнивания окно Size and Position, указав одинаковые значения координаты по Y (рис. 12.36).
Рис. 13.36. Указание координат в окне Size and Position

Далее самостоятельно завершите создание схемы.

Требования к защите лабораторной работы

Для защиты лабораторной работы необходимо уметь:

- открывать трафареты;
- переносить фигуры на страницу;
- изменять положение фигур на странице;
- изменять размеры фигур;
- форматировать фигуры;
- работать с соединителями;
- осуществлять выравнивание фигур;
- группировать/разгруппировать фигуры;
- работать с командами пунктов меню и панелей инструментов;
- объяснять, каким образом и с помощью каких инструментов создана схема, рассмотренная в лабораторной работе.

Контрольные вопросы

1. Для чего предназначено приложение MS Visio?
2. Специалисты каких областей могут использовать его в работе?
Приложение

Таблица 1

<table>
<thead>
<tr>
<th>Вариант</th>
<th>Функция</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 11</td>
<td>(y = ae^{\sqrt{x}} \cos bx + c) (a = 1,5) (b = 2) (c = -0,75)</td>
</tr>
<tr>
<td>2, 12</td>
<td>(z = \sqrt{a + be^{\sin x} + 1}) (a = 2) (b = 1,2)</td>
</tr>
<tr>
<td>3, 13</td>
<td>(f = \sqrt{m \tan y + c \sin y}) (m = 2) (c = -1,2)</td>
</tr>
<tr>
<td>4, 14</td>
<td>(z = \frac{\sin x}{\sqrt{1 + m^2 \sin^2 x}} - c \ln mx) (m = 0,7) (c = 2,1)</td>
</tr>
<tr>
<td>5, 15</td>
<td>(z = bte^{ax^2} + a \sqrt{t + 1,5}) (a = -0,5) (b = 1,5)</td>
</tr>
<tr>
<td>6, 16</td>
<td>(y = b^x \arctg \left(\frac{x}{a} \right) - \frac{\sqrt{x}}{a}) (a = 3,7) (b = 0,5)</td>
</tr>
<tr>
<td>7, 17</td>
<td>(z = \frac{x + a \cos 2x}{x + \sqrt{a + b \sin 3x}}) (a = 4,1) (b = -2,3)</td>
</tr>
<tr>
<td>8, 18</td>
<td>(y = \sin \frac{a}{b} - e^{bx} \sqrt{x + 1}) (a = 2,3) (b = 0,75)</td>
</tr>
<tr>
<td>9, 19</td>
<td>(s = e^{ax} \sqrt{ax + b \sin 2x}) (a = 1,5) (b = -1,2)</td>
</tr>
<tr>
<td>10, 20</td>
<td>(z = a \cos (bt \sin t) + c) (a = 2) (b = 0,7) (c = 0,5)</td>
</tr>
</tbody>
</table>

Таблица 2

<table>
<thead>
<tr>
<th>Вариант</th>
<th>Уравнение</th>
<th>Системы уравнений</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 9</td>
<td>(x^4 - 2x^2 = 3)</td>
<td>(\begin{cases} x^2 + y^2 = 64 \ (x - 1)^2 - 2 = y \end{cases}) (\begin{align*} 3x_1 - 4x_2 + \frac{x_3}{5} &= 3 \ -4x_1 + 2x_2 + 7x_3 &= -2 \ -x_1 + 11x_2 &= 3 \end{align*})</td>
</tr>
<tr>
<td>2, 10</td>
<td>(x^3 - 2x = 8)</td>
<td>(\begin{cases} 10 \sin</td>
</tr>
<tr>
<td>3, 11</td>
<td>(\frac{e^{x}}{e^3} - 5 = 0)</td>
<td>(\begin{cases} (x - 2)^2 + y^2 = 25 \ y - (x - 2)^3 = 0 \end{cases}) (\begin{align*} 11x_1 + 2x_2 + \frac{x_3}{3} &= -2 \ -4x_1 + 7x_3 &= 1 \ -x_1 + 5x_2 - 5x_3 &= 2 \end{align*})</td>
</tr>
<tr>
<td>Вариант</td>
<td>Уравнение</td>
<td>Системы уравнений</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td>-------------------</td>
</tr>
<tr>
<td>4, 12</td>
<td>ln (x - x = -4) [\begin{cases} (x - 2)^2 + y^2 = 25 \ y - (x - 2)^3 = 0 \end{cases} \quad \begin{cases} 11x_1 + 20x_2 + \frac{x_3}{3} = -2 \ -4x_1 + 7x_2 = -30 \ 11x_1 + 5x_2 - 5x_3 = 10 \end{cases}]</td>
<td></td>
</tr>
<tr>
<td>5, 13</td>
<td>(Sin2x - 0.5 = 0) [\begin{cases} e^x - 2 = y \ x^2 + y^2 = 4 \end{cases} \quad \begin{cases} -\frac{x_1}{5} + 20x_2 + 2x_3 = -2 \ -4x_1 + 7x_2 + 8x_3 = -30 \ 5x_2 - 5x_3 = 10 \end{cases}]</td>
<td></td>
</tr>
<tr>
<td>6, 14</td>
<td>(x^2 - 1 = 2x) [\begin{cases} \sqrt{x - 2} - y = 0 \ x^2 + y^2 = 4 \end{cases} \quad \begin{cases} 3x_1 + 2x_3 = 50 \ -4x_1 + 7x_2 + 8x_3 = 10 \ 2x_1 + 5x_2 - \frac{x_3}{3} = 10 \end{cases}]</td>
<td></td>
</tr>
<tr>
<td>7, 15</td>
<td>(x^3 - x = 5) [\begin{cases} y - \log_2 x = 1 \ \frac{y}{2} - \sqrt{x} = -2.5 \end{cases} \quad \begin{cases} 3x_1 + 4x_2 + 4x_3 = 2 \ -4x_1 + 8x_3 = 3 \ 2x_1 + 5x_2 - \frac{x_3}{3} = -20 \end{cases}]</td>
<td></td>
</tr>
<tr>
<td>8, 16</td>
<td>(\sqrt[3]{x - 2} = 1) [\begin{cases} x^2 + y^2 = 4 \ y - x^2 = 3 \end{cases} \quad \begin{cases} 11x_1 + 30x_2 + 4x_3 = 25 \ 20x_1 + 8x_3 = 50 \ 15x_1 + 45x_2 - \frac{x_3}{3} = 2 \end{cases}]</td>
<td></td>
</tr>
</tbody>
</table>
Таблица 3

<table>
<thead>
<tr>
<th>Вариант</th>
<th>Функции</th>
</tr>
</thead>
</table>
| 1, 5, 9, 13 | \[
\begin{align*}
 z &= \begin{cases}
 a t^2 \ln t & t > 0 \\
 e^{-a} \cos bt & t \leq 0
 \end{cases} \quad a = -0,5 \quad b = 2 \\
 z &= \begin{cases}
 \frac{a + b}{e^x + \cos x} & x > 0,5 \\
 \frac{a + b}{x + 1} & -2 \leq x \leq 0,5 \\
 e^x + \sin x & x < -2
 \end{cases} \\
\end{align*}
| 2, 6, 10, 14 | \[
\begin{align*}
 y &= \begin{cases}
 a x^4 + b \sin x & x \leq 1 \\
 e^x + \sqrt{a^2 + x^3} & x > 1
 \end{cases} \quad a = 2,2 \quad b = 0,3 \\
 y &= \begin{cases}
 ae^{\sin x} + 2,5 & x < 0,3 \\
 \frac{\sin x}{a + e^x} & x > 0,3 \\
 e^{\cos x} + a & x = 0,3
 \end{cases} \\
\end{align*}
| 3, 7, 11, 15 | \[
\begin{align*}
 z &= \begin{cases}
 ae^{\sin x} + 2,5 & x < 0,3 \\
 \frac{\sin x}{a + e^x} & x \geq 0,3
 \end{cases} \quad a = 1,5 \\
 z &= \begin{cases}
 ai + \frac{b}{i} & i < 5 \\
 ai^2 + b & 5 \leq i \leq 10 \\
 i^3 & i > 10
 \end{cases} \\
\end{align*}
| 4, 8, 12, 16 | \[
\begin{align*}
 y &= \begin{cases}
 \frac{a + b i^2 + c}{i} & i \leq 7 \\
 ai + b i^3 & i > 7
 \end{cases} \quad c = -1,5 \quad a = 2,1 \quad b = 3,15 \\
 f &= \begin{cases}
 at^2 - b\sqrt{t-1} & t > 1 \\
 a - b & -2 \leq t \leq 1 \\
 at^{2/3} - b\sqrt{t+1} & t < -2
 \end{cases} \\
\end{align*}
<p>|</p>
<table>
<thead>
<tr>
<th>Вариант</th>
<th>Функция</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$f = ax^3 - bx\quad a = -2\quad b = 1,7\quad x \in [-5; 7]\quad \Delta x = 0,8$</td>
</tr>
<tr>
<td>2</td>
<td>$y = ax^2 - \frac{x}{b} + c\quad a = 1,4\quad b = 2\quad c = 3,6\quad x \in [-3; 8]\quad \Delta x = 1,3$</td>
</tr>
<tr>
<td>3</td>
<td>$f = a(x-2)^2 + b\quad a = 2\quad b = -2,45\quad x \in [-10; 0]\quad \Delta x = 0,9$</td>
</tr>
<tr>
<td>4</td>
<td>$z = c(y-d)^2 + 5\quad c = 2\quad d = 1,4\quad y \in [-5; 5]\quad \Delta y = 1,7$</td>
</tr>
<tr>
<td>5</td>
<td>$z = ay^3 + by - 1\quad a = 2\quad b = -1,2\quad y \in [-4; 4]\quad \Delta y = 0,45$</td>
</tr>
<tr>
<td>6</td>
<td>$f = (x-b)^2 + c\quad b = 2\quad c = 1,5\quad x \in [-2; 8]\quad \Delta x = 1,3$</td>
</tr>
<tr>
<td>7</td>
<td>$z = \frac{(x-a)^2}{b} + 2\quad a = 1\quad b = 1,3\quad x \in [-2; 4]\quad \Delta x = 0,6$</td>
</tr>
<tr>
<td>8</td>
<td>$t = 2 + x^2 - \frac{a}{b}\quad a = 4\quad b = 2,3\quad x \in [-6; 6]\quad \Delta x = 0,9$</td>
</tr>
<tr>
<td>9</td>
<td>$f = \frac{(x-a)^2}{2} + b\quad a = 2\quad b = 1,45\quad x \in [-10; 8]\quad \Delta x = 1,8$</td>
</tr>
<tr>
<td>10</td>
<td>$y = \frac{bx^2}{a} + x\quad a = 2\quad b = 2,4\quad x \in [-4; 6]\quad \Delta x = 0,6$</td>
</tr>
</tbody>
</table>
БИБЛИОГРАФИЧЕСКИЙ СПИСОК

Учебно-методическое издание

Черепанова Анастасия Леонидовна

ИНФОРМАТИКА

ЛАБОРАТОРНЫЙ ПРАКТИКУМ

Редактор В.С. Смирнова
Компьютерный набор А. Л. Черепановой