ПРОВЕДЕНИЕ УЧЕБНЫХ ЗАНЯТИЙ С ПРИМЕНЕНИЕМ МУЛЬТИМЕДИЙНОЙ ТЕХНИКИ

Методические рекомендации

ИРКУТСК
2016
Рекомендовано к изданию редакционным советом ИрГУПС

Составители:
Е. В. Арбатский, начальник управления информатизации ИрГУПСа;
А. В. Данеев, д-р техн. наук, профессор, профессор кафедры «Информационные системы и защиты информации» ИрГУПСа;
О. Г. Демченок, канд. техн. наук, доцент, начальник учебного отдела ВСИ МВД России

Рецензенты:
С. И. Носков, д-р техн. наук, профессор ИрГУПСа;
В. И. Демakov, канд. техн. наук, доцент ВСИ МВД России

Издание представляет обзор различных видов мультимедийных технических средств обучения. Версия включает технические характеристики всего комплекса информационных и коммуникационных устройств: мультимедийных проекторов, интерактивных досок, интерактивных насадок на плазменные панели, систем видеоконференции, компьютеризированных тренажёров, а также компьютеров и программного обеспечения. Особое внимание удалено педагогическому потенциалу мультимедийной техники, особенностям применения аудиовизуальной информации на различных видах учебных занятий.

Методические рекомендации предназначены для профессорско-преподавательского состава учебных заведений с целью расширения кругозора в области использования новых технологий.

УДК 378:004.9
ББК 74.58

© Арабатский Е. В., Данеев А. В.,
Демченок О. Г., 2016
© Иркутский государственный университет
путей сообщения, 2016
СОДЕРЖАНИЕ

ПРЕДИСЛОВИЕ ... 4
МУЛЬТИМЕДИЙНЫЕ ТЕХНИЧЕСКИЕ СРЕДСТВА ОБУЧЕНИЯ 5
 Общая классификация ТСО .. 5
 Средства мультимедиа ... 7
ХАРАКТЕРИСТИКА ТЕХНИЧЕСКИХ СРЕДСТВ МУЛЬТИМЕДИА 9
 Вычислительная техника .. 9
 Мультимедийные проекторы ... 12
 Интерактивные доски .. 17
 Интерактивные насадки на плазменные панели ... 21
 Системы видеоконференции ... 21
 Компьютеризированные тренажёры ... 24
 Компьютеры и программное обеспечение ... 26
ПРИМЕНЕНИЕ МУЛЬТИМЕДИЙНОЙ ТЕХНИКИ НА ЗАНЯТИЯХ 31
 Использование мультимедийного проектора ... 31
 Использование интерактивной доски ... 37
 Использование видеоконференций .. 41
 Компьютерное тестирование ... 44
 Разработка обучающей программы .. 51
ЗАКЛЮЧЕНИЕ .. 61
БИБЛИОГРАФИЧЕСКИЙ СПИСОК ... 62
ПРЕДИСЛОВИЕ

Повышение требований к качеству подготовки специалистов в вузах России приводит к необходимости совершенствования системы образования для более эффективного овладения новой информацией. Ускорить и повысить качество усвоения учебного материала помогают технические средства обучения (далее – TCO). Современные TCO значительно превосходят своих предшественников по уровню наглядности, удобству использования; упростились подготовительные работы (чтобы убедиться в этом, достаточно сравнить плакаты, кодоскоп и мультимедийный проектор).

Объективная необходимость использования TCO в процессе обучения заключается в их огромном влиянии на процесс понимания и запоминания. При проверке эффективности запоминания текста установлено, что при слуховом восприятии усваивается 15 % информации, при зрительном – 25, а в комплексе, т. е. при зрительном и слуховом одновременно, – до 65 % [23]. Другими исследователями приводятся несколько иные количественные оценки, однако все сходятся в том, что эффективность усвоения материала в случае применения TCO существенно повышается. Известно, что, когда человек читает, он не только видит текст, но и двигает глазами, а также проговаривает прочитанное про себя (мысленно). То есть происходит многомерное восприятие информации. В случае ведения конспекта добавляется еще и моторно-механистическое восприятие.

Эффективность использования TCO напрямую влияет на эффективность учебного процесса в целом, поэтому повышение эффективности использования TCO представляется актуальной и практически значимой задачей. Для достижения положительного эффекта от внедрения TCO необходима определенная квалификация (компетентность) профессорско-преподавательского состава в области использования современных информационных средств в образовательной деятельности. Основной целью данного издания авторы видят оказание методической помощи преподавателям в практическом применении наиболее современного вида TCO – средств мультимедиа.
МУЛЬТИМЕДИЙНЫЕ ТЕХНИЧЕСКИЕ СРЕДСТВА ОБУЧЕНИЯ

Общая классификация TCO

Многочисленными исследованиями доказано, что от выбранной педагогической технологии и степени ее адекватности во многом зависит качество обучения. В последнее время всё большее внимание уделяется такой составляющей педагогической технологии, как средства обучения.

Для начала конкретизируем понятия «средства обучения» и «технические средства обучения» (TCO).

К средствам обучения относят различные материальные объекты, вовлекаемые в образовательный процесс в качестве носителей учебной информации и инструмента деятельности педагога и учащихся. Таким образом, к средствам обучения относятся все используемые в учебном процессе материальные объекты, начиная от карандаша и ластика, заканчивая учебными корпусами и стадионом. Термину «средства обучения» в российской педагогической литературе соответствуют эквиваленты: «учебное оборудование», «учебно-наглядные и учебные пособия», а также «дидактические средства».

Особую группу составляют технические средства обучения – системы, комплексы, устройства и аппаратура, благодаря использованию которых более успешно достигаются поставленные цели обучения.

Получается, что критерий отнесения средств обучения к TCO — это наличие специальной аппаратуры. Поэтому плакат с какой-либо учебной информацией не является TCO, а показ той же информации техническими средствами (скажем, при помощи проектора) будет применением TCO в учебном процессе.

TCO можно классифицировать по функциональному назначению, по роду обучения, по логике работы, по характеру работы и другим признакам. На рис. 1 представлена классификация технических средств обучения по функциональному назначению.

Рис. 1. Классификация TCO по функциональному назначению
По роду обучения выделяют ТСО индивидуального, группового и поточного пользования.

По логике работы рассматривают ТСО:
- с линейной программой работы (не зависят от обратной связи);
- с нелинейной программой работы (обеспечивают различные режимы работы в зависимости от качества и объема обратной связи).

По характеру работы ТСО подразделяются на:
- звуковые (аудиотивные) – магнитофоны, диктофоны, проигрыватели, лингафонные устройства;
- визуальные – диапроекторы, кодоскопы, эпидиаскопы;
- аудиовизуальные – телевизоры, видеомагнитофоны, кино- и видеопроекторы;
- специализированные кабинеты, тренажеры, симуляторы, исследовательские стенды и т. п.;
- мультимедиа технологии – компьютеры и компьютерные сети, интерактивное видео; средства медиаобразования (в т. ч. мультимедийные проекторы), учебное оборудование на базе компьютерной техники;
- средства для оперативной печати (копирование) раздаточного материала и др.

Основное назначение традиционных ТСО – передача учебной информации – зрительного или звукового образа, реалистично моделирующего изучаемый объект, явление и процесс.

Дидактические особенности ТСО:
- высокая информационная насыщенность,
- рационализация преподнесения учебной информации,
- возможность показа изучаемых явлений в развитии, динамике.

Грамотно организованное применение ТСО в учебном процессе способствует реализации следующих дидактических принципов:
- принципа целенаправленности;
- принципа связи с практикой;
- принципа наглядности;
- создание положительного эмоционального фона педагогического процесса.

Новые перспективы использования ТСО, связанные с их сочетанием с компьютерной аппаратурой, создают условия для накопления и хранения значительных объемов учебной информации, оперативного её применения, для выработки новых форм общения педагога и обучаемых, а также для самостоятельной работы учащихся.
Средства мультимедиа

Одно из условий эффективной подготовки обучающихся – разработка и применение информационных технологий, позволяющих решать широкий круг задач, недоступных ранее. Происходит активное внедрение в образовательный процесс информационных технологий, в том числе такой их разновидности, как мультимедиа технологии. Применение мультимедиа технологий приводит к формированию более эффективных подходов к обучению и совершенствованию методики преподавания. Помимо этого, внедрение таких технологий способствует повышению мотивации обучения учащихся, экономии учебного времени, более глубокому усвоению материала.

Мультимедиа (multimedia, от англ. multi – много и media – носитель, среда) – одновременное использование различных форм представления информации.

Например, в одном мультимедийном файле может содержаться текстовая, аудиальная, графическая и видео информация, а также, возможно, способ интерактивного взаимодействия с ней. Термин мультимедиа также используется для обозначения носителей информации, позволяющих хранить значительные объемы данных и обеспечивать достаточно быстрый доступ к ним (первыми носителями такого типа были CD-Compact Disc). В этом понимании термин мультимедиа означает, что компьютер может использовать такие носители и предоставлять информацию пользователю через все возможные виды данных, такие как аудио, видео, анимация, изображение и другие в дополнение к традиционным способам предоставления информации, такими как текст.

Средства мультимедиа (мультиведийные TCO) – комплекс аппаратных и программных средств, позволяющих использовать самые разные технологии: графику, гипертексты, звук, анимацию, видео.

Средства мультимедиа могут представлять обучаемому следующие виды информации:
- текст (форматы doc, pdf, html);
- двумерные изображения, 2D изображения (D – начальная буква от англ. dimension – измерение, координата; форматы bmp, gif, jpeg, dib, wmf, emf и др.) – плоские статичные (неподвижные) изображения;
- анимированные изображения (форматы gif, png) – последовательно демонстрируемые изображения, хранящиеся в одном файле (получается небольшой мультфильм);
- трехмерные изображения, 3D изображения. Трёхмерное изображение отличается от плоского построением геометрической проекции трёхмерной модели сцены на экране компьютера с помощью специализированных программ. При этом модель может как соответствовать объектам из реального мира (здание, автомобиль, тело
человека), так и быть полностью абстрактной. Трёхмерная графика обычно имеет дело с виртуальным, воображаемым, трёхмерным пространством, которое отображается на плоской, двухмерной поверхности дисплея или листа бумаги.

В настоящее время известно несколько способов отображения трёхмерной информации в объемном виде, хотя большинство из них представляет объемные характеристики весьма условно, поскольку работают со стереоизображением. Из этой области можно отметить стереоочки, виртуальные шлемы, 3D-дисплеи, способные демонстрировать трехмерное изображение. 3D-технологии дают возможность не только видеть объемную картину, но и взаимодействовать с изображенными на ней предметами, что является основой создания виртуальной реальности;

- **звук** (форматы mp3, wav, midi, RealAudio);
- **видео** (форматы avi, mpeg, mov, wmv, swf, RealMedia и другие).

Помимо широких возможностей высококачественной демонстрации различных видов информации, мультимедийные технологии отличает интерактивность.

Интерактивность – это способность информационной системы автоматически, без участия человека, активно и разнообразно реагировать на действия пользователя.

В отличие от **линейного способа** представления данных (т. е. их представления в строго заданном порядке) мультимедиа технологии дают возможность **интерактивного, нелинейного способа** демонстрации учебного материала.

В качестве примера линейного и нелинейного способа представления информации можно рассмотреть два варианта проведения лекции. Если лекция предварительно была записана на видеокамеру и транслируется аудитории, то просматривающие данную презентацию не имеют возможности влиять на докладчика, что соответствует линейному способу. В случае проведения лекции в форме видеоконференции (нелинейным способом) аудитория имеет возможность задавать докладчику вопросы и взаимодействовать с ним прочим образом, что позволяет докладчику пояснить некоторые термины или более подробно освещать спорные части доклада. Таким образом, видеоконференция может быть представлена как нелинейный (интерактивный) способ подачи информации, так и линейный.

Наибольшую степень интерактивности позволяют достичь компьютерные обучающие программы благодаря возможностям варьирования способами и формами представления учебного материала (текстовые описания с иллюстрациями, звуковое сопровождение, демонстрации), автоматизации выдачи и контроля выполнения индивидуальных заданий, наличию интерактивных объектов (иллюстрации, модели), а также выделению кадров с основным и дополнительным материалом.
ХАРАКТЕРИСТИКА ТЕХНИЧЕСКИХ СРЕДСТВ МУЛЬТИМЕДИА

Рассмотрим основные виды технических средств мультимедиа и дадим краткую характеристику их возможностей.

Вычислительная техника

При рассмотрении средств мультимедиа зачастую упускают вопрос выбора вычислительный техники для обработки материалов и выдачи их на устройство вывода (проекторы, экраны). Неверный выбор средства мультимедиа может усложнить работу преподавателя, либо сделать ее невозможной.

На текущий момент можно выделить следующие классы устройств, которые можно применять для проведения занятий:

1. ПЭВМ;
2. неттопы;
3. ноутбуки;
4. нетбуки / ультрабуки;
5. планшетные компьютеры;
6. мобильные телефоны.

ПЭВМ – персональные ЭВМ. Комплект, которой состоит из системного блока, монитора, клавиатуры, мыши, возможно, колонок. В зависимости от задач аудиторию можно оснащать как офисным ПЭВМ, который позволяет работать с офисными пакетами и простыми презентациями, так и мощным ПЭВМ, для использования в сложных вычислениях. К сожалению, стационарные ПЭВМ являются достаточно громоздкими и тяжелыми, поэтому их следует устанавливать стационарно в аудитории. Это решение обладает следующими недостатками:

– преподаватели могут внести изменения в рабочие программы, которые, в свою очередь, способны конфликтовать с требованиями, внесенными другими пользователями;
– вероятность заражения компьютера вирусами с внешних носителей;
– обеспечение недостаточной сохранности оборудования.

Для решения этих проблем можно использовать:

– ограничение допуска преподавателей к возможности внесения изменений в настройку ПЭВМ (групповые политики Windows, гостевые аккаунты в Linux);
– устанавливать и постоянно обновлять антивирусное ПО (для Windows);
– размещать ПЭВМ в специальном боксе / кафедре.
Альтернативой стационарному ПЭВМ являются **неттопы** — небольшие по физическим размерам персональные компьютеры, которые можно крепить к мониторам, проекторам или ставить отдельно (рис. 2). Единственное отличие от стационарного ПЭВМ — размеры системного блока. Если стационарный ПЭВМ проблематично транспортировать, то неттоп легко поддаётся перемещениям, но при этом остается проблема подключения неттопа на месте ко всей инфраструктуре (проектору, монитору, клавиатуре, мыши, питанию), поэтому преимуществ неттопа перед обычным ПЭВМ с точки зрения организации учебного процесса достаточно немного:

- возможность размещать его в бокс меньших размеров или на подоконнике с проектором;
- возможность использовать пассивное охлаждение, что приводит к снижению (или отсутствию) шума от работы ПЭВМ.

Рис. 2. Размещение неттопа на мониторе

Альтернативой ПЭВМ является **ноутбук**. При наличии ноутбука преподаватель может проводить занятия в любой, не оснащенной аппаратурой аудитории. А так же он может заранее на рабочем месте проверить работу всего ПО, которое ему требуется для занятий. Несмотря на очевидные преимущества перед стационарным компьютером есть ряд минусов, которые могут привести к отказу от использования таких форм проведения занятий. Такими минусами являются:

- вес ноутбуков 2–4 кг.;
- большие габариты (14–17”);
- короткое время работы от батареи (1–2 часа), либо обязательность использования блока питания;
- необходимость подключения ноутбука к проектору;
- тихий звук встроенных колонок для прослушивания аудио- и видеоматериалов в аудитории на двадцать и более человек.
В 2008 году появилось доступное решение для мобильной работы под названием нетбук. Это особый вид ноутбуков, у которых более простая аппаратная начинка, меньшая диагональ экрана, но более продолжительное время работы от батареи (6–8 часов). По сути, нетбуки являются идеальным вариантом для мобильного просмотра и презентации электронных материалов. Недостатки нетбуков тесно связаны с их достоинствами:

- небольшой экран (9–12”) для людей со слабым зрением;
- неудобная клавиатура и сенсорная панель (TouchPad) для набора текста и управления графическими пакетами;
- меньшая производительность, чем у ноутбуков и ПЭВМ, для использования требовательного к аппаратному обеспечению ПО.

С 2011 началось производство тонких и легких ноутбуков, которые получили название ультрабук. Ультрабуки сохраняют производительность обычных ноутбуков и автономность нетбуков, а так же их небольшой вес. К 2015 году понятия нетбук и ультрабук смешались и зачастую означают одну и ту же категорию ноутбуков.

К 2010 году стали доступны планшетные компьютеры («планшеты»). Первые модели были достаточно громоздкими и неудобными в работе. Но начиная с появления Nexus, iPad mini, которые по своим размерам и весу могут размещаться в пиджаке, папке, дамской сумке, устройство приобрело популярность. Планшеты можно использовать для:

- чтения лекций (позволяет отказать от лекций на бумажных носителях);
- вывода презентаций на проектор (при наличии кабеля или специального беспроводного устройства сопряжения планшета с проектором / экраном, например, Google Chromcast).

Рис. 3. Электронный учебник

К недостаткам планшетных компьютеров можно отнести:
ограниченный функционал для воспроизведений презентаций, созданных в пакетах MS PowerPoint, LibreOffice Impress;
невозможность запуска специального ПО, которое написано для работы на ПЭВМ, ноутбуках (для архитектур x86, x64).

В качестве альтернативы планшетным компьютерам можно упомянуть электронные книги, но их можно использовать только для чтения лекций. Авторами были опробованы различные варианты электронных книг и наиболее успешным вариантом можно назвать только электронный учебник Plastic Logic, который под таким названием вошел в массовое производство (рис. 3). Любой преподаватель может освоить этот учебник за пять минут перед занятием и затем успешно его применить. Экран учебника (10,7") позволяет комфортно читать с экрана, а вес (475 г) не оттягивает руки на занятии. По состоянию на конец 2015 года имеющиеся в продаже электронные книги уступают планшетным компьютерам с точки зрения практического применения.

Современные мобильные телефоны на базе операционных систем Android iOS так же можно использовать для проведения занятий. В этом случае мобильные телефоны рассматривается как планшетные компьютеры, но с меньшей диагональю экрана. Меньшая диагональ затрудняет чтение с экрана телефона.

Мультимедийные проекторы

Мультимедийный проектор – устройство, обеспечивающее передачу (просеивание) на большой экран информации, поступающей от внешнего источника – компьютера (ноутбука), видеомагнитофона, DVD-проигрывателя, видеокамеры, телевизионного тюнера и т. п. Один из вариантов современного средства отображения информации представлен на рис. 4.
Любой проектор может использоваться, как правило, только в сочетании с внешним источником информации.

Рис. 4. Мультимедийный проектор
В некоторых моделях, правда, предусмотрена возможность записи на встроенную PC-картку определённого (не слишком большого) объёма компьютерной информации. Некоторые проекторы оснащены картридерами, позволяющими выводить на экран фотографии и презентации с карт памяти. Такие возможности являются отличительными чертами той или иной модели, и они обязательно приводятся в списке основных характеристик проектора. Имеются модели проекторов со встроенным DVD-плеером, некоторые из которых оснащены также акустическими системами.

Появляется все больше моделей, допускающих подключение по сети Ethernet. Такие проекторы могут получать по локальной сети контент для отображения на экране. Кроме того, все более совершенными становятся беспроводные модели мультимедийных проекторов. Они допускают соединение по WiFi с ноутбуком (компьютером), что бывает удобно для проведения беспроводных презентаций. Некоторые модели мультимедийных проекторов могут соединяться одновременно с несколькими ноутбуками по WiFi, причем качество таких соединений позволяет вплотную приблизиться не только к передаче статических картинок и анимационных эффектов Power Point, но и потокового видео.

Особенно следует выделить источники видеосигналов высокой четкости (BluRay и HD – телевещание). Проекторы, которые способны обрабатывать и отображать сигналы HD, относятся к классу HD-ready. Те же из них, что имеют разрешение матрицы 1920 x1080, являются полноценными Full HD проекторами, отображающими сигналы форматов 1080и и 1080р «точка-в-точку».

Для правильного выбора проектора необходимо определиться с тем, какую задачу должен решать проектор, к каким источникам информации он будет подключен, а также в каких условиях ему предстоит работать.

Основные характеристики мультимедийного проектора:

- **разрешение матрицы** характеризует дробность видео, создаваемого проектором, и определяется числом светящихся элементов – пикселей жидких кристаллов или микрозеркал. Имеется большое разнообразие вариантов разрешающей способности проекторов: 640x480, 800x600, 1024x780, 1280x1024, 1400x1050, 1600x1200, 2048x1536 и т. д. (чем выше разрешение, тем качественнее изображение, особенно при выводе на большой экран);

- **физический формат матрицы** (4:3, 16:9, 16:10 и т. д.) – соотношение сторон создаваемого изображения. Формат 4:3 по-прежнему пока является основным, в то же время всё шире используются широкоформатные матрицы;

- **технология, по которой изготовлен проектор.** Существуют три конкурирующие технологии изготовления матриц мультимедийных проекторов. Это жидккие кристаллы на проеци (технология LCD), микрозеркала (технология DLP) и жидккие кристаллы на от-
ражение (технологии LCOS, D-ILA, SXRD). В принципе все технологии равноправны, и в большинстве случаев не технология определяет выбор проектора. Однако при повышенных требованиях к качеству изображения (отсутствие искажений и паразитных теней, натуральность цветопередачи, степень дискретности изображения (пикселизация), глубина контраста, отсутствие т. н. «эффекта радуги», мягкость или резкость подачи цветов и др.) следует учитывать особенности той или иной технологии. Кроме того, DLP-проекторы могут создавать мерцание при видеоzapисях, поэтому на мероприятиях, где ведутся видеосъёмки, рекомендуется использовать LCD или LCOS проекторы;

- **световой поток (яркость)** проекторов достигает 30 000 лм (лм или люмен равен световому потоку, испускаемому точечным изотропным источником с силой света, равной одной канделе, в телесный угол величиной в один стерадиан). Для сравнения: обычная лампа накаливания мощностью 100 Вт создаёт световой поток, равный 1300 лм. Следует отметить появление проекторов минимальных размеров, в которых в качестве источников света вместо ламп используются светодиоды. Световой поток таких проекторов не превышает сотен или даже десятков лм. Если рассчитывать на просмотр в условиях затемнения, то достаточно использовать проектор со сравнительно небольшим световым потоком, от 600 до 1500 лм. Если же показ происходит в освещенном зале, целесообразно использовать проектор с высокой яркостью;

- **наличие сетевых интерфейсов.** Некоторые проекторы имеют возможность получать контент для вывода на экран по сети (локальной – Ethernet или же беспроводной по стандарту WiFi). Как правило, в беспроводном режиме поддерживается показ статических картинок в режиме слайд-шоу. Однако появились модели, обеспечивающие возможность беспроводного приёма потокового видео. Кроме того, имеются беспроводные адAPTERы, которые можно подключить к любому проектору для приёма «живого» видео.

- **вес.** По весу выделяют следующие категории проекторов:

 - стационарные
 - переносные
 - портативные
 - ультра портативные
 - микро портативные
 - класс Palm («с ладонь»)
 - класс Pico
 - класс Pocket

более 18 кг;
9–18 кг;
4,5–9 кг;
2,25–4,5 кг;
менее 2,25 кг;
менее 1,4 кг;
менее 0,5 кг, яркость 150 лм;
На рис. 5 представлено изображение пикопроектора.

Рис. 5. Пикопроектор (Pico projector)

Дополнительными характеристиками проектора являются:
- **контрастность** — отношение максимальной и минимальной освещенности экрана при проецировании белого и черного поля. С этим показателем существует неопределенность, так как в паспортных данных проекторов иногда нет ссылок на стандарт измерения, и не понятно, относятся ли данные контрастности только к центру изображения или выведены по методике ANSI. Последняя предусматривает усреднение данных измерений по распределенным зонам (без центральной) отдельно для белого и черного полей и вычисление отношения средних величин, которое в итоге редко превышает 400:1. Однако часто приводятся значения т. н. «дynamической контрастности», достигающие значений 5000:1 и выше;
- **равномерность освещения** показывает отношение минимальной освещенности (на периферии изображения) к максимальной (в его центре); в хороших проекторах этот показатель превышает 70 %. К сожалению, производители редко размещают сведения об этом параметре в паспортных данных;
- **характеристики объектива**. Большинство современных мультимедийных проекторов комплектуются объективами с изменяемым фокусным расстоянием (так называемые, объективы с трансфокаторами или ZOOM-объективы). Наличие ZOOM-объектива существенно упрощает подготовку к видео показам, т. к. позволяет менять размер изображения, не передвигая проектор. В наиболее совершенных моделях объективы оснащены электроприводами, позволяющими не только вручную, но и с пульта изменять масштаб изображения и регулировать фокусировку;
− количество и типы входных и выходных разъёмов. Любой проектор имеет, по крайней мере, один компьютерный (RGB) или видеовход для соединения с внешним источником данных (аналоговое видео S-video, цифровое DVI, HDMI, реже SDI). Могут также присутствовать разъёмы для подключения компьютерной мыши для управления проектором от внешнего компьютера, аудиовход;
− дополнительные функциональные особенности, такие как "электронная лупа" — возможность сильного (до 30 раз) увеличения выделенного участка изображения, поступающего из компьютера; "картинка в картинке" – возможность одновременного показа изображений, поступающих от двух независимых источников; встроенный слот для PC-карт или USB вход для флеш-карты, что даёт возможность проводить презентацию без компьютера; лазерная указка; автоматическая подстройка яркости изображения в зависимости от освещённости помещения и др.;
− уровень шума. Обычно от 23 до 45 дБ, зависит от конструкции и мощности используемых вентиляторов. Для комфортной работы в небольших помещениях этот показатель не должен превышать 30 дБ. В больших залах, особенно если проектор установлен в изолированном помещении, требования к этому параметру снижаются.

Определяющее влияние на качество изображения оказывает разрешение. Чем выше разрешение, тем меньше размеры светящихся элементов и более качественно изображение на экране. К этому всегда следует стремиться, однако с увеличением разрешения возрастает и стоимость проекторов. Поэтому рекомендуется выбирать разрешение с учётом характера проецируемой информации, ориентируясь на нижеприведенную таблицу.

<table>
<thead>
<tr>
<th>Проецируемая информация</th>
<th>Рекомендуемое разрешение</th>
</tr>
</thead>
<tbody>
<tr>
<td>Компьютерные презентации, подготовленные с помощью PowerPoint, простая графика и крупные тексты</td>
<td>SVGA (800x600) (бюджетный вариант), XGA (1024x780) (более качественный вариант)</td>
</tr>
<tr>
<td>Видео и фильмы среднего качества при проецировании на экран с диагональю до 3 м</td>
<td>SVGA (800x600), WVGA (854X480), WSVGA (960x540)</td>
</tr>
<tr>
<td>Таблицы, подготовленные в Excel, мелкие тексты, архитектурная графика</td>
<td>XGA (1024x780), SXGA (1280x1024)</td>
</tr>
<tr>
<td>Видео и DVD-фильмы при проецировании на экран с диагональю более 3 м</td>
<td>XGA (1024x780), W XGA (1365x768)</td>
</tr>
<tr>
<td>CAD/CAM приложения, машино- и приборостроительные чертежи, географические карты и т. п.</td>
<td>SXGA (1280x1024), SXGA+ (1400x1050), HD2K (1920x1080)</td>
</tr>
<tr>
<td>DVD-фильмы, BluRay, телевидение высокой четкости при обеспечении высокого качества изображения.</td>
<td>SXGA (1280x1024), SXGA+ (1400x1050), UXGA (1600x1200), HD2K (1920x1080)</td>
</tr>
</tbody>
</table>
В технических характеристиках проектора указывается его номинальное разрешение, соответствующее реальному количеству пикселей воспроизводящих элементов. Как правило, проекторы имеют возможность воспринимать сигнал с меньшим и с большим разрешением, чем номинальное, за счет использования компрессии (сжатия информации). При этом, естественно, происходят некоторые искажения картинки, зачастую заметные для глаза. Интенсивность этих искажений зависит от качества алгоритма компрессии, используемого в конкретном проекторе. Найлучшая картинка получается в случае, когда разрешения источника информации и проектора совпадают. Поэтому не следует пренебрегать возможностью перенастройки разрешения видеокарты компьютера или выходного разрешения DVD (BluRay) источника.

Указанное в технических характеристиках номинальное разрешение не означает, что проектор реализует картинку только одного номинального формата. Почти у всех проекторов предусмотрена возможность через меню перестроить формат изображения. Однако такое переформатирование происходит за счёт неполного использования площади воспроизводящих элементов (матриц), что, вообще говоря, неэффективно. Поэтому целесообразно выбирать проектор, разрешение которого по формату соответствует основному назначению.

Необходимо помнить, что при попадании на экран прямого солнечного света даже самый мощный мультимедийный проектор не сможет обеспечить качественное изображение. Для защиты от солнца необходимо использовать шторы или жалюзи. Полезно также предусмотреть возможность отключения электрического освещения в районе расположения экрана.

При выборе размеров экрана должны быть соблюдены 2 условия:
– расстояние от самого дальнего зрителя до экрана не должно быть больше 5–6 кратной ширины экрана;
– расстояние от самого ближнего зрителя до экрана не должно быть меньше полуторной ширины экрана.

Выбор проектора (разрешение, световой поток, размер проецируемого изображения и др.) должен производиться, исходя из конкретных условий эксплуатации и тех задач, которые проекционная система предназначена решать.

Интерактивные доски

Интерактивная (сенсорная) доска – это сенсорный экран, подсоединенный к компьютеру, изображение с которого передает на доску проектор. Доска дает возможность демонстрировать слайды, видео, делать пометки, рисовать, чертить различные схемы, как на обычной доске, в реаль-
ном времени наносить на проецируемое изображение пометки, вносить любые изменения и сохранять их в виде компьютерных файлов для дальнейшего редактирования, печати на принтере, рассылки по факсу или электронной почте.

Достаточно подключить интерактивную доску к компьютеру и мультимедийному проектору, чтобы получить возможность работать с изображением от любого источника. Работа с интерактивной доской не требует специальных знаний и навыков.

С помощью специального электронного маркера или даже пальца можно делать пометки поверх проецируемого на доску изображения, которые будут сохраняться в файле на компьютере. Докладчик может не только выделять с помощью маркера фрагменты изображения на экране, но и вносить исправления в текст. Управлять компьютерными приложениями можно при помощи маркера или пальцем, а также, управляя компьютерной мышью, использовать многочисленные функции, делающие выступление более наглядным.

Рис. 6. Интерактивная доска

Производители интерактивных досок используют разные технологии для определения положения пишущего инструмента на доске. Наиболее распространены:
- сенсорная резистивная матрица;
- сочетание инфракрасной и ультразвуковой технологии;
- электромагнитная технология;
- лазерная технология;
- оптическая технология.
Резистивная технология основана на применении резистивных матриц и реализована в досках производства Smart и Polyvision. Резистивная матрица – это вмонтированная в пластиковую поверхность интерактивной доски сетка из двух слоев тончайших проводников, разделенных воздушным зазором. Проводники замыкаются от давления на поверхность при прикосновении. Таким образом, докладчик может использовать для работы с доской любой предмет – указку, маркер, собственный палец. Эта технология сенсорная, она не требует применения специальных маркеров, не использует никаких излучений для работы и не подвержена внешним помехам. Недостатком этой технологии является задержка реакции матрицы при быстром перемещении маркера или заменяющего его предмета. Кроме того сенсорную поверхность доски можно повредить чрезмерно сильным нажатием или острым предметом, участок доски в месте повреждения становится неработоспособным.

В инфракрасной и ультразвуковой технологиях используются инфракрасные и ультразвуковые датчики, определяющие положение электронного маркера и ластика. Пищущая часть маркеров вставляется в специальный электронный держатель, взаимодействующий с датчиками. Преимущество таких досок заключается в прочной, вандалоустойчивой поверхности и высокой скорости отслеживания перемещений маркера. Некоторый недостаток технологии в том, что такие доски подвержены воздействию со стороны посторонних источников излучений. Ультразвуковая и инфракрасная технология используются в интерактивных досках Hitachi и Panasonic.

В основе оптической технологии лежит использование двух инфракрасных излучателей и датчиков, расположенных на верхней кромке доски, которые отслеживают движущийся по поверхности маркер или любой другой предмет, например, палец. Эта технология используется в интерактивных досках FX Duo компании Hitachi.

Электромагнитная технология основана на передаче электронных сигналов с пишущего устройства, которым может быть либо специальный электронный карандаш, либо вложенные в электронные держатели маркеры.

Интерактивные доски могут быть прямой и обратной проекции.

При прямой проекции проектор светит со стороны докладчика. Это создает докладчику определенные неудобства: при работе у доски часть экрана закрывается тенью докладчика. Кроме того, общению с аудиторией мешает бьющий в глаза свет проектора.

В досках обратной проекции проектор расположен за просветным интерактивным экраном в специальном корпусе. Для этого используются проекторы с исключительно малыми значениями проекционного соотношения. Такие проекторы способны создавать изображения размером 2–2,5 метра по диагонали при дистанции проецирования всего 8–30 см.
Разрешающая способность интерактивных досок от 2000x2000 до 8000x8000 точек, что выше, чем у современных мониторов и проекторов. Это обеспечивает исключительно высокую точность при передаче информации.

Интерактивные доски могут использоваться в 4-х режимах:
1) как обычная белая маркерная доска. Нанесённые фломастером надписи стираются губкой или сухой салфеткой;
2) как безбликовый экран;
3) совместно с компьютером (как копировальный электронный блок);
4) совместно с компьютером и мультимедийным проектором (проекционный режим) как интерактивная система, обеспечивающая общение с компьютером в режиме «On Line». При этом компьютер может использовать любое программное обеспечение, например, текстовый процессор Microsoft Word.

В режимах 3) и 4) информация вводится с помощью специального пе-ра (маркера). Запись на доске передается в компьютер в реальном времени. В качестве перьев, в зависимости от используемой технологии фиксации информации, могут использоваться непрочные пластмассовые указатели, электромагнитные карандаши либо обычные маркеры (фломастеры). В большинстве моделей маркеры и ластик хранятся в лотке доски, на специально отведённых местах. Если взять из лотка маркер определённого цвета, доска автоматически переключается на этот цвет. В некоторых моделях цвет маркера задаётся нажатием специальной клавиши. Перемещая маркер по поверхности доски, можно ввести в машину любую графическую информацию. Кроме того, нажав на специальную кнопку у нижнего края доски, можно вызвать изображение клавиатуры и, касаясь виртуальных клавиш, набирать текст, вводить цифры и знаки и т. п. При этом маркер выступает в качестве курсора мыши. В некоторых моделях предусмотрено распознавание рукописного текста: написанный от руки текст преобразуется в заданный формат.

Следует отметить простоту установки и использования досок, а также их совместимость с системами видеоконференций, позволяющими создать систему реального времени, передающую информацию, нанесённую на доску, отдаленным абонентам.

Доски обычно крепятся к стене. Для напольной установки досок дополнительно поставляются специальные подставки с регулировкой по высоте.

Интерактивные доски имеют относительно небольшие размеры (диа-гональ от 1 до 3 метров при соотношении сторон 4:3), что несколько ограничивает их применение при проведении поточных занятий.
Интерактивные насадки на плазменные панели

Существуют также интерактивные насадки для плазменных (реже – жидкокристаллических) панелей, превращающие их в интерактивные плазменные (жидкокристаллические) экраны.

Рис. 7. Интерактивная насадка на плазменную панель

Такая насадка, толщиной 1,5–2,5 см, легко надевается на плазменную панель. В компьютере устанавливаются соответствующие драйверы, и плазменная панель, подключённая к компьютеру, становится интерактивным устройством, управляемым нажатием пальца или электронного маркера. Разрешающая способность насадки выше, чем у самой плазменной панели. Выпускаются насадки для панелей с диагональю 32, 37, 40, 42, 50, 60 дюймов. Насадка практически не уменьшает яркость плазменной панели (потери света – не более 15 %) и не меняет допустимый угол обзора. При выборе насадки необходимо знать модель используемой плазменной панели. Вес насадки может составлять 10–15 кг. Стоимость насадок достаточно велика, что ограничивает применение этого средства мультимедиа в учебном процессе. Вариант интерактивной насадки изображен на рис. 7.

Системы видео конференции

Всем известна русская народная пословица «Лучше один раз увидеть, чем сто раз услышать». Как показали исследования, при возможности сле-дить за жестикуляцией и мимикой коэффициент полезного действия трансляции информации достигает 60 %, в то время как при аудиоконтакте передается только ее десятая часть. В связи с этим в последнее время все большую популярность приобретают формат видео конференции.
Видеоконференция – это не просто видеотелефон на персональном компьютере. Видеоконференция – это технология, которая позволяет людям видеть и слышать друг друга, обмениваться данными и совместно обрабатывать их в интерактивном режиме, используя возможности привычного всем компьютера, максимально приближая общение на расстоянии к реальному живому общению.

Преподаватели, пользуясь видео-конференц-связью, работают одновременно с несколькими аудиториями, расположенными в различных регионах страны. При этом установленные камеры предоставляют возможность интерактивного общения (слушатели могут задавать вопросы в режиме реального времени). В свою очередь преподаватели таким же образом принимают зачеты и экзамены. В этом случае необходимо наличие инструментария для совместной работы над документами и возможности демонстрировать дополнительные материалы. Это далеко не полный перечень областей применения видео-конференц-связи, а лишь небольшая их часть, позволяющая оценить перспективы этой технологии.

Рис. 8. Видеоконференция

Существуют две основные проблемы, тормозящие развитие видео-конференц-связи, решение которых требует значительных материальных затрат:

- требуется высокая пропускная способность канала связи. Аналоговые телефонные линии вполне подходят для передачи аудиосигнала, но не в состоянии обеспечить качественной трансляции потока видеоинформации;
- скорость обработки аудио- и видеопотока должна быть достаточна для работы в режиме реального времени. Технологии видео-конфе-
Классификация видеоконференций

В зависимости от уровня оборудования, используемого для систем видеоконференц-связи, различают персональные, групповые и студийные настольные видеоконференции.

Групповые видеоконференции используются для проведения лекций и семинаров, эффективного общения крупных и средних групп пользователей при совместной работе над проектом, для проведения дискуссий и выступлений, на которых участник не может присутствовать лично. Благодаря высокому качеству сигнала можно осуществлять обмен и просмотр документов, групповую работу с приложениями. Для создания групповых видеоконференций требуется сервер, обеспечивающий взаимодействие групп пользователей, специализированные программные продукты для рабочих станций и сервера, локальная сеть.

И, наконец, студийные видеоконференции, для создания которых требуются высококлассное специализированное телеборудование (студийные камеры, звуковое и контрольное оборудование, мониторы) и максимальная пропускная способность каналов связи (доступ к каналам спутниковой и оптоволоконной связей). Такие видеоконференции используются для решения задач, требующих максимума возможностей с точки зрения организации обработки информации большим числом людей. Для них характерен формальный, жестко регламентированный стиль общения, устанавливаемый ведущим. Типичным примером подобных видеоконференций являются телемосты.
По топологии различают два основных типа видеоконференций: «точка–точка» и многоточечные.

Конференции «точка-точка» наиболее просты. Они подразумевают соединение только двух рабочих станций «напрямую», в то время как многоточечные видеоконференции дают возможность поддерживать одновременно несколько десятков пользователей или групп пользователей, но при этом требуют дополнительных затрат на установку и поддержку специализированного устройства – серверы управления многоточечными сеансами. Все терминалы, участвующие в конференции, устанавливаются соединение с сервером, который управляет ресурсами видеоконференции, согласовывает возможности терминалов по обработке звука и видео, определяет аудио- и видеопотоки, которые необходимо направлять по многим адресам.

К примеру, если вам нужно использовать видео-конференц-связь с несколькими филиалами только для передачи распоряжений и приема отчетов в режиме реального времени, то для этой цели вполне подойдет конференция типа «точка–точка» (достаточно обеспечить каждый филиал и головной офис специализированным терминалом), в то время как для организации совещания с участием представителей всех филиалов требуется многоточечная видеоконференция.

Многоточечные сеансы связи могут проводиться в двух основных режимах:

- **активация по голосу.** В этом режиме все участники сеанса видят говорящего, а говорящий видит предыдущего оратора;

- **непрерывное присутствие.** На экран каждому участнику поступает изображение от нескольких других участников. При этом экран разделется на несколько полей — от 2 до 16. Если полей меньше чем участников, то одно из них может работать в режиме «активация по голосу». И в том и в другом режиме возможен «председательский контроль» — выбор активного терминала, подключение и отключение терминалов администрациором видеоконференции. При необходимости можно включить автоматический режим администрирования с возможностью в любой момент вмешиваться в этот процесс.

Компьютеризированные тренажёры

Тренажёр (от англ. train – воспитывать, обучать, тренировать) – учебно-тренировочное устройство, искусственно имитирующее различные аспекты профессиональной деятельности.

С помощью компьютеризированных тренажёров, воспроизводящих интерьер кабины аппарата, тренируются пилоты, космонавты, машинисты высокоскоростных поездов, личный состав вооруженных сил и т. д.
В деятельности органов внутренних дел нашли применение лазерные стрелковые тренажерные комплексы и интерактивные тиры.

Рис. 9. Компьютеризированный стрелковый тренажёр

Умелое владение личным оружием достигается только при помощи эффективного обучения стрельбе и повседневных тренировок, проведение которых требует специально оборудованных помещений (стрелковых тиров) и значительного расхода дорогостоящих боеприпасов. В этой ситуации находят свое применение стрелковые тренажёры. Особенно высока эффективность применения тренажёра на первоначальном этапе обучения: постановка правильной стойки, хвата, дыхания, удержания оружия, прицеливания, производство плавного спуска курка. Исключительно важна травмобезопасность стрелкового тренажёра. Специалисты отмечают, что тренировавшиеся с применением стрелковых тренажёров стрелки достигали практически тех же результатов, что и стрелки, использовавшиеся для тренировок личное оружие с боевыми патронами.

Состав компьютеризированного стрелкового тренажёра:
- персональный компьютер (ноутбук);
- мультимедийный проектор;
- акустические системы;
- лазерный тренажер (встроенный в макет оружия или монтируемый на боевое оружие);
- фотоприемное устройство (для регистрации попаданий);
- программное обеспечение для управления тренажёром;
— экран.

Принцип действия тренажёра: при спуске курка срабатывает звуковой датчик и на мишени на мгновение появляется яркая, красная точка, хорошо видимая глазом. Тренажер позволяет проводить тренировки, как с непрерывным лазерным лучом, так и с лазерным импульсом, появляющимся только в момент выстрела. Инструктор также может в любой момент контролировать выполнение выстрела и вовремя исправить допущенные ошибки. Как показывает практика, для достижения устойчивого навыка обучаемому необходимо сделать не менее 5 000–10 000 холостых выстрелов, и здесь лазерный тренажер просто не заменим.

Среди разработчиков можно выделить научно-технический центр «Лазерные технологии», занимающийся производством лазерных стрелковых тренажёров «Рубин» для силовых и охранных структур.

Лазерные стрелковые тренажёры «Рубин» отличает:
— большой ассортимент тренажеров, как для индивидуальных, так и групповых занятий;
— высокая надежность работы;
— возможность отрабатывать технику стрельбы по неподвижным и движущимся мишениям, в статике, и при перемещениях;
— возможность проводить имитационные и боевые стрельбы;
— возможность организовать занятия по тактико-огневой подготовке с использованием интерактивных видеоосюжетов;
— соответствие обучающих программ для лазерного тира наставлению по стрелковому делу и приказам МВД России;
— наличие сертификатов (сертификат соответствия МВД России, гигиенический сертификат).

Компьютеризированные тренажёры в отличие от обычных тренажёров значительно более эффективны благодаря большей наглядности, интерактивности, а также возможности регистрации и последующего анализа результатов обучения.

Компьютеры и программное обеспечение

Компьютеры являются основой любых рассмотренных выше мультимедийных технологий. Основные новации в педагогике, как правило, так или иначе связаны с применением компьютерных технологий. Поэтому академик Российской академии образования В. П. Беспалько называет образование и обучение с участием компьютеров «педагогикой третьего тысячелетия». Постоянно расширяется сфера применения компьютеров в учебном процессе.

Компьютеры, оснащенные соответствующим программным обеспечением, предоставляют учебным заведениям возможность:
– автоматизации контроля знаний (компьютерного тестирования);
– программированного обучения (обучающие компьютерные программы);
– получения информации, связанной с научной и учебной деятельностью;
– использования компьютерных сетей для обмена информацией (электронная почта, электронные доски объявлений, форумы, чаты, телеконференции);
– удаленного доступа к базам данных, библиотечным каталогам и файлам электронных библиотек, доступ к открытым файловым серверам сети Internet для получения свободно распространяемых программных средств;
– оформления обучающими реферативными, курсовыми, дипломными и других работ;
– организации дистанционного обучения;
– выполнения расчётов любой степени сложности с использование пакетов прикладных программ;
– автоматизации обработки, связанной с учебным процессом, (составление расписания занятий, учёт успеваемости, ведение и оформление служебной документации, создание и использование баз данных по сотрудникам и обучаемым и т. д.).

Применительно к непосредственному проведению учебных занятий наиболее важными представляются первые два пункта списка, так как именно они напрямую связаны с основными задачами учебного процесса – обучить профессиональным знаниям, умениям, навыкам и проконтролировать качество обучения. Поскольку основная задача данного издания – это методическое обеспечение проведения учебных занятий с применением мультимедийной техники, то ограничимся рассмотрением двух первых пунктов списка.

Автоматизация контроля знаний (компьютерное тестирование)

В последнее время всё более востребованными становятся тестовые технологии контроля знаний. Растущая популярность тестов объясняется следующими факторами:
– повышенная точность и обоснованность тестовой оценки;
– исключение влияния субъективного мнения преподавателя на оценку;
– сопоставимость результатов освоения учебного материала (т. е. корректность сравнения данных успеваемости по годам, учебным группам и т. д.);
– технологичность, особенно в случае компьютерного тестирования;
– снижение психологической нагрузки на преподавателей и обуча-
мых (особенно по сравнению с устной проверкой знаний);
– удобство самоконтроля.

На федеральном уровне тестирование, в том числе и компьютерное, прочно вошло в повседневную практику. В качестве примеров можно привести Единый государственный экзамен (ЕГЭ, сайт www.ege.ru), теоретический экзамен на получение водительских прав, федеральный Интернет-экзамен в сфере профессионального образования (проводится при лицензировании и аккредитации вузов, сайт www.fepo.ru), тестирование уровня остаточных знаний студентов STELLUS и др.

Рекомендации по организации учебного процесса в образовательных учреждениях для проведения аттестации обучаемых наряду с другими материалами предусматривают также и тестовые задания. Тесты становятся необходимой частью учебного процесса.

Основные функции программ автоматизированного контроля знаний:
– разработка компьютерных тестов,
– автоматизация предъявления теста обучаемым, регистрация ответов,
– обработка результатов тестирования,

Дополнительными характеристиками программ компьютерного тестирования являются:
– количество поддерживаемых форм тестовых заданий (т. е. типов шаблонов для ввода формулировки задания, исходных данных, иллюстративного материала, вариантов ответа и данных для оценки степени правильности ответа);
– шкала педагогического оценивания (четырехбалльная – «неуд.»/«удовл.»/<"хор.">/<"отл."> 20-ти или 100-балльная шкала и др.);
– возможность использования мультимедийных файлов (графика, видео, аудио) для иллюстрации задания и в качестве вариантов ответов;
– задание условий формирования выборки вопросов при тестировании;
– задание критериев оценки;
– возможность сохранения и печати протокола тестирования (после подписания обучаемым протокол может служить документальным подтверждением факта тестирования и обоснованием педагогической оценки);
– накопление и анализ статистики ответов;
– возможность работы в сети и др.

Один из наиболее удобных способов реализации тестирования – это инструментальные оболочки, позволяющие пользователю составлять различные тесты, например:

– система поддержки дистанционного обучения STELLUS (выбрана базовой для организации дистанционного обучения в образовательных учреждениях системы ряда министерств, позволяет вести подготовку учебных материалов и тестов; обеспечивает процедуры сдачи тестов и экзаменов в автоматическом и полуавтоматическом режиме);

– система поддержки учебного процесса HyperTeacher (сайт www.yspu.yar.ru/ht) имеет возможность создания тестов, обеспечивает предъявление обучаемым тестовых заданий разнообразных видов и статистический анализ результатов;

– пакет программ SunRav TestOfficePro (сайт www.sunrav.ru) обеспечивает создание, проведение различных тестов на отдельном компьютере, в локальной сети и в Интернете и обработки результатов тестирования;

Программированное обучение

Программированное обучение – это система методов и средств обучения, основой которого выступает самостоятельное приобретение знаний и навыков учащимися за счет пошагового усвоения материала.

Этот метод обучения предложен профессором Б. Ф. Скиннером (Skinner B. F.) в 1954 году и получил развитие в работах специалистов многих стран, в том числе отечественных учёных. Н. Ф. Тальзиной, П. Я. Гальперина, И. И. Тихонова и других.
Роль преподавателя сводится к контролированию эффективности поэтапного освоения слушателями учебного материала, а, в случае необходимости, регулированию программных действий. В целом программированное обучение можно рассматривать как попытку формализации процесса обучения с максимально возможным устранением субъективного фактора непосредственного общения между преподавателем и обучающимися. В настоящее время считается, что этот подход оправдал себя лишь частично. Его использование показало, что процесс обучения не может быть полностью автоматизирован, а роль преподавателя и общение с ним учащегося в процессе обучения остаются приоритетными. Тем не менее, развитие компьютерных технологий и дистанционного обучения повышает роль программированного обучения в образовательной практике.

Компьютерная обучающая программа — это программное средство учебного назначения, используемое для автоматизации освоения учебного материала.

Работа с обучающей программой должна строиться по принципу активного диалога с привлечением возможностей мультимедиа, гипертекста, использования телекоммуникаций, а также других программных, технических и методических приемов. Эти приемы призваны частично заменить преподавателя. Обучающая программа не подменяет собой традиционные учебные материалы, а дополняет их, используя возможности современных компьютерных технологий. Так, помимо краткого изложения учебного материала, в состав обучающей программы входят интерактивные иллюстрации и примеры, раскрывающие приведенные теоретические положения. Крайне важной представляется возможность контроля усвоения учебного материала и управления деятельностью обучаемого.

В хорошо продуманной обучающей программе сконцентрирован опыт преподавателя, хорошо знающего, что может вызвать затруднения у студента, и какие типичные ошибки он может допустить. Тем самым преподаватель как бы участвует в процессе изучения студентом материала дисциплины. Таким образом, в обучающей программе закладывается не только учебный материал, но и возможности усвоения, т. е. понимание и запоминание этого материала, а также и контроль формирования знаний, умений, навыков.

Преимущества обучающей программы объясняются возможностью комплексной реализации таких принципов обучения, как:
- индивидуализация процесса обучения за счет его адаптации к индивидуальным характеристикам обучаемых (как минимум, каждой обучаемый самостоятельно выбирает темп изучения учебного материала, что обычно недостижимо при групповом обучении);
- последовательность и систематичность учебного материала;
- визуализация информации;
- возможность варьирования сложности учебного материала;
– использование технических средств контроля, знаний, умений и навыков.
Мультимедийный характер компьютерной обучающей программы позволяет студенту в ходе изучения материала просмотреть иллюстрирующие видео- и анимационные фрагменты, прослушать запись аудиоматериала по данной теме.

ПРИМЕНЕНИЕ МУЛЬТИМЕДИЙНОЙ ТЕХНИКИ НА ЗАНЯТИЯХ

Как показывает практика, наиболее эффективными базовыми принципами организации учебного процесса с использованием мультимедийных технологий являются:

1) системная связь с существующими технологиями обучения, органичное включение в традиционные формы ведения учебного процесса, не требующее существенной перестройки ни психологии преподавателя, ни психологии восприятия материала обучающимися;
2) проведение всех видов учебной работы с использованием мультимедийной техники, возможность демонстрирования и управления с помощью интерактивных устройств;
3) использование сетевых технологий и ресурсов компьютерных сетей, позволяющих решать задачи на принципиально новом информационном уровне.

Использование мультимедийного проектора

Мультимедийные проекторы позволяют демонстрировать аудитории содержание любых файлов. Это могут быть текстовые файлы, документы Microsoft Word или Excel, отдельные изображения и видеофильмы. Однако наиболее эффективной следует признать подготовку электронных презентаций, поскольку этот тип файлов ориентирован именно на экранное представление информации.

Электронная презентация, выполненная в среде Microsoft PowerPoint или ее аналогах (например, Impress из бесплатного пакета обработки деловой информации OpenOffice) – удобный способ преподнести учебную информацию самой разной аудитории. Основным преимуществом презентации является возможность демонстрации текста, графики (фотографий, рисунков, схем), анимации и видео в любом сочетании без необходимости переключения между разными файлами и программами. Для проведения успешной презентации, способы завоевать внимание слушателей и произвести на них должное впечатление, необходимо подготовить грамотную речь, правильно ее озвучить, соблюдая несложные правила поведения при
публичном выступлении, а также уделить определенное внимание оформлению слайдов.

Презентации открывают перед преподавателем новые возможности, например, можно проследить историю развития изучаемого процесса; проиллюстрировать последние достижения науки и техники; показать современные устройства; продемонстрировать портреты и т. д.

Существенным преимуществом презентации является представление графического материала: графиков, схем, карт и т. д. При традиционном изложении указанного материала к завершению относительно сложного графического построения, как правило, на доске разобрать что-либо становится уже сложно. Более того, если слушатель отвлекся на каком-то этапе, построить то же изображение второй раз не всегда возможно, поскольку на это требуется много времени. При грамотном же использовании анимации в презентации в случае необходимости можно несколько раз «прокрутить» как отдельные сложные моменты, так и все построение от начала и до конца, и это займет всего несколько секунд. Качество графического материала при этом, несомненно, значительно выше, чем при традиционном изложении.

Достоинством самостоятельной работы слушателей с презентацией является возможность индивидуально регулировать темп изучения учебного материала: одному понадобится несколько секунд, чтобы изучить схему, появившуюся на экране, а другому – минуты. Кому-то из слушателей потребуется вернуться назад и просмотреть предшествующий фрагмент заново.

Усилить эффект от использования презентаций можно, раздавая распечатки сложных рисунков, таблиц, схем. Использование таких распечаток может значительно ускорить ход занятия, сэкономив время для записи более важных вещей. В случае если рисунок или схема действительно важны для понимания сути занятия, можно показывать их не в окончательном варианте, а выводить постепенно (как при рисовании на доске). Это позволит пояснить, как зарисовать схему или рисунок и будет способствовать лучшему запоминанию, развитию логики.

Сформулируем основные рекомендации по оформлению презентаций:

1. Презентация начинается со слайда, содержащего ее название (и, возможно, имена авторов). Эти элементы обычно выделяются более крупным шрифтом, чем основной текст презентации. В качестве фона первого слайда можно использовать рисунок или фотографию, имеющую непосредственное отношение к теме презентации, однако текст поверх такого изображения должен легко читаться. Подобное правило соблюдается и для фона остальных слайдов.

2. Следует использовать стандартные пропорциональные шрифты, такие как Arial, Times New Roman, Georgia и др.;
размер – не менее 18. Использование шрифтов, не входящих в комплект, устанавливаемый по умолчанию вместе с операционной системой, может привести к некорректному отображению вашей презентации на другом компьютере, т. к. нестандартных шрифтов там может не оказаться. Большинство дизайнерских шрифтов, используемых обычно для набора крупных заголовков в печатных изданиях, в рамках презентации смотрятся слишком броско, отвлекают внимание от ее содержания, а порой и просто вызывают раздражение аудитории. Желательно ограничиться 2–3 шрифтами, хотя обычно вполне достаточно и одного. Не стоит увлекаться созданием надписей с помощью объектов WordArt. Такие надписи, подкапающие разработчика презентации причудливой формой, возможность использовать разнообразные тени, объем, как правило, ухудшают восприятие слайдов.

3. Для презентации необходимо подобрать цветовую гамму: обычно это три-пять цветов, среди которых есть как теплые, так и холодные. Любой из этих цветов должен отлично читаться на выбранном ранее фоне. Назначив каждому из текстовых элементов свой цвет, например: крупным заголовкам – красный, мелким заголовкам – зеленый, подписям к рисункам – оранжевый и т. п., нужно следовать такой схеме на всех слайдах. Выделение различными цветами слов в составе заголовка или абзаца основного текста допускается только с целью акцентирования на них внимания: например, если вводится новый термин или приводятся важные численные значения. «Раскрашивание» текста только из эстетических соображений может, как и неудачный выбор шрифтов, привести к отвлечению внимания слушателей и их раздражению. Основной текст рекомендуется набирать нейтральным цветом – черным, белым или серым различных оттенков, в зависимости от яркости фона.

4. Следует избегать необоснованного использования эффектов анимации текста и графики, за исключением самых простых, например медленного исчезновения или возникновения полосами, хотя и они должны применяться в меру. «Собираем» слова по буквам раздражает всех, кроме автора презентации.

5. Не стоит стараться разместить на одном слайде как можно больше текста. Для того, чтобы прочесть мелкий текст, многим необходимо существенно напрягать зрение. Поэтому, чем больше текста на одном слайде вы предложите аудитории, тем с меньшей вероятностью она его прочитает. Тем не менее, известны случаи, когда преподаватели, проводя лекцию в форме презентации, размещали на одном слайде несколько длинных определений, и студенты были вынуждены переписывать их в тетрадь прямо с экрана. Такое некорректное использование компьютерных технологий в образовании вместо повышения его эффективности приводит лишь к быстрой утомляемости и, нередко, к ухудшению зрения.
6. Не читать текст со слайда. Хорошо известно, что любая речь воспринимается намного лучше, если она произносится докладчиком, обращившим свой взор к слушателям, находящимся с аудиторией в прямом зрительном контакте. Если же докладчик начинает читать с листа, то эффективность передачи информации значительно снижается. И уж совсем нелепо выглядит человек, делающий презентацию, когда ему приходится читать текст непосредственно со слайда. В этом случае слушатели, как правило, перестают и слушать, и читать то, что изображено на экране. Докладчику, потерявшему в такой момент внимание аудитории, очень сложно вернуть его в дальнейшем. Старайтесь не использовать текст на слайде как часть вашей речи; лучше поместите туда важные тезисы и лишь один-два раза обернитесь к ним, посвятив остальное время непосредственной коммуникации с вашими слушателями.

7. Обязательно иллюстрируйте презентацию рисунками, фотографиями, наглядными схемами, графиками и диаграммами. Яркие картинки привлекают внимание куда эффективнее, чем сухой текст или, порой, даже очень неплохая речь. Изображению всегда следует придавать как можно больший размер; если это возможно, каждую иллюстрацию разместите на отдельном слайде.

8. Используйте только короткие видеосюжеты. Рекомендуется ограничиться видеосюжетами длительностью не более 3–5 минут. Презентация может привести к потере интереса аудитории. Кроме того, во время просмотра преподаватель теряет контакт с аудиторией, тратится время занятия.

9. Завершайте презентацию кратким резюме. На заключительный слайд нужно вынести самое основное, главное, что было в презентации: основные положения, важные данные, выводы и т. д.

Особенности применения мультимедийного проектора на лекции:
- при разработке презентации:
 - для важной информации используйте верхние 3/4 площади экрана (слайда), т. к. с последних рядов нижняя часть экрана обычно плохо видна;
 - по возможности оцените соотношение размера экрана и лекционной аудитории. Если расстояние от самого дальнего ряда до экрана больше 6 кратной ширины экрана, то рекомендуется увезличить размер шрифта презентации;
 - в содержание презентации включайте наиболее важную информацию;
- перед лекцией:
 - проверьте работоспособность техники;
 - уточните возможности установленного в лекционной аудитории оборудования для управления показом презентации (сенсорная панель ноутбука, стандартная компьютерная мышь, интерактив-

34
ный лазерный указатель, трекбол и др.). Если у Вас нет опыта работы с таким оборудованием, обязательно попрактикуйтесь в его использовании;
• проверьте возможность подключения к установленному в лекционной аудитории оборудованию носителей информации (иногда может оказаться, что принесенная Вами на USB флэш-диск презентация не сможет быть прочитана в данной аудитории по техническим причинам);
 — во время лекции:
• закройте шторы или жалюзи для защиты от попадания на экран прямого солнечного света;
• располагайтесь сбоку от экрана, пользуйтесь лазерной укаской;
• используйте раздаточный материал (распечатки сложных рисунков, таблиц, схем и т. д.). Раздача таких распечаток может повысить интерес обучаемых, ускорить ход лекции, экономить время для более глубокой проработки материала;
• в случае если рисунок или схема важны для понимания сути занятия, стоит показывать их не в окончательном варианте, а выводить постепенно (как при рисовании на доске). Это позволит пояснить, как заполнить схему или рисунок и будет способствовать лучшему запоминанию, развитию логики;
• при проведении презентации можно делать пометки от руки в любом месте слайда (выделить главное, записать важные данные или формулу, ответ на вопрос слушателя и т. д.). При проведении презентации средствами Microsoft PowerPoint можно делать рукописные пометки, поменяв указатель на ручку или инструмент выделения в панели инструментов Показ слайдов. Если во время презентации были добавлены рукописные данные, то при закрытии показа слайдов можно сохранить или удалить рукописные примечания.

Возможности применения мультимедийного проектора на семинарском занятии:
 — обсуждаемые вопросы целесообразно визуализировать с помощью электронной презентации, включающей соответствующие схемы, фрагменты документов, фотографии, короткие видеоосо жеты и др.;
 — следует поощрять слушателей, подготовляющих презентации для выступления на семинаре. Это повышает интерес к выступлению, стимулирует слушателей к углубленной самостоятельной работе, содействует живому обмену мнениями по рассматриваемым вопросам, творческому обсуждению учебного материала;
– желательно предусмотреть возможность вывода на экран основных выводов по каждому из рассматриваемых вопросов.

На практических занятиях мультимедийный проектор может выводить на экран:
– основные теоретические положения, необходимые для решения практических задач;
– подробный разбор решения типовых задач (возможно пошаговое рассмотрение решения задачи);
– варианты предлагаемых слушателям задач.
Возможно несколько вариантов оборудования аудитории проектором:
1. Переносной проектор с ноутбуком без специального экрана.
2. Переносной проектор с ноутбуком и с экраном на штативе.
3. Переносной проектор с ноутбуком и с закреплённым экраном.
4. Стационарный проектор с ноутбуком и с закреплённым экраном.
5. Стационарный проектор с ПЭВМ и с закрепленным экраном.

В рамках проведения занятий за последние 4–5 лет были проверены различные комбинации оборудования. Наиболее оптимальным вариантом является использование проектора совместно с нетбуком. Вес всего оборудования при этом не превышает 3–4 кг, а преподаватель может все унести в одной сумке / портфеле. Время развертывания оборудования в аудитории до полной готовности – 2–3 минуты. Время выключения и сборки – 3–5 минут. Стоимость: 30–35 тыс. рублей.

Для массовых учебных аудиторий рекомендуем 3-й вариант, так как это позволяет избежать проблем с вирусами, неготовностью требуемого ПО для демонстрации материалов. Для специализированных аудиторий, где проводятся занятия с применением сложных программных продуктов, требующих большого количества вычислений (например, AutoCAD), рекомендуем 5-й вариант.

При стационарной установке проектора желательно потолочное крепление (рис. 9) с проведением кабелей (питания, передачи сигнала) к столу преподавателя. Длиннофокусные проекторы размещаются на удалении от доски, а короткофокусные проекторы размещаются над доской. Преподавателю остается принести с собой ноутбук, подключить кабель к ноутбuku, включить проектор и начать занятие. При этом возникает проблема дистанционного управления проектором – требуется пульт. Пульт можно закрепить на связку ключей от помещения, либо, наиболее предпочтительный вариант, в помещении рядом с розетками закрепляется ящик, в который сворачиваются кабели и кладется пульт от проектора. Ключ от такого ящика помещается на связку ключей от помещения.
Перспективным вариантом можно назвать применение Chromecast (или аналогичного устройства) для передачи видеоизображения с планшета на проектор по WiFi (рис. 10). Особенностью Chromecast является то, что он сразу выдает изображение по HDMI, что поддерживает большинство современных проекторов.

Рис. 9. Вариант размещения проектора в аудитории

Рис. 10. Проектор + Chromecast + Планшет

Использование интерактивной доски

Интерактивная доска и её аналог – интерактивная насадка на плазменную панель – предоставляют уникальные возможности для работы и творчества преподавателя. Например, чтобы начертить мелом на доске обычную схему или геометрический объект требуется много времени. Качество таких иллюстраций, как правило, оставляет желать лучшего, что затрудняет восприятие учебного материала. А с помощью программного обеспечения и интерактивной доски такие иллюстрации можно сделать быстро и качественно. При необходимости легко изменить размеры фигуры, повернуть ее или перенести на другой участок интерактивной доски.
Применение интерактивной доски в учебном процессе позволяет:

1) уйти от собственно презентационной формы подачи материала. В большинстве случаев составляемые для проведения учебных занятий презентации представляют собой простой набор слайдов, богатые функциональные возможности программы PowerPoint (или её аналогов) практически не используются. С помощью интерактивной доски педагог получает полный контроль над компьютером: прямо с поверхности доски может запускать любое приложение, делать собственные комментарии, демонстрировать аудио, видео и анимационные фрагменты, графические изображения. Это усиливает динамичность и наглядность подачи материала, предоставляет больше возможностей для взаимодействия и обсуждения в аудитории, делает занятия более интересными благодаря разнообразному и динамичному использованию ресурсов;

2) повысить эффективность подачи материала. По силе и глубине воздействия на аудиторию грамотно построенное занятие с использованием компьютера и интерактивной доски может сравниться с кино и театром (не следует забывать о возможности звукового сопровождения презентации, демонстрации фотографий, видео и т. д.). Однако это требует определённого уровня компетентности профессорско-преподавательского состава в области использования современных информационных средств;

3) повысить учебную активность обучаемых. Благодаря разнообразию материалов, которые можно использовать на интерактивной доске, обучаемые быстрее схватывают новые идеи. Они активно обсуждают новые темы и быстрее запоминают материал;

4) организовать групповую работу (или групповую игру), навыки которой принципиально важны для успешной профессиональной деятельности. Управляя обсуждением учебного материала, преподаватель может подтолкнуть обучаемых к работе в небольших группах. Интерактивная доска становится центром внимания для всей аудитории. А если все дидактические материалы подготовлены заранее и легко доступны, она обеспечивает хороший темп занятия;

5) существенно упростить процесс формирования культуры выступления перед аудиторией. Углублённая проработка материала занятия, разработка электронного дидактического материала, уверенное владение технологией применения технических средств на занятии способствуют развитию профессионального мастерства преподавателя;

6) возможность фиксации происходящего во время занятия в памяти компьютера. Этот прием может быть использован для работы
Особенности проведения лекций с использованием интерактивной доски

Всё то, что отмечено выше в качестве особенностей применения мультимедийного проектора, можно с полным правом отнести и к интерактивной доске. Поэтому не будем повторяться и остановимся на том, что отличает интерактивную доску.

Важным свойством электронной интерактивной доски при подготовке лекции является возможность размещать материал на нескольких страницах. Специализированное программное обеспечение, разработанное для интерактивных досок, позволяет легко и быстро составить план лекции, подобрать и правильно расположить нужный материал. При этом преподаватель может использовать входящие в комплект поставки различные фоны и богатую библиотеку клипартов (иллюстративного материала). При подготовке к лекции необязательно использовать саму интерактивную доску. Достаточно иметь на компьютере то же самое программное обеспечение, что и для интерактивной доски. На интерактивной доске можно легко передвигать объекты и надписи, добавлять комментарии к текстам, рисункам и диаграммам, выделять ключевые области и добавлять цвета. К тому же тексты, рисунки или графики можно скрыть, а затем показать в ключевые моменты лекции.

Проведение семинаров и практических занятий с использованием интерактивной доски

Следует отметить, что для проведения семинарских и практических занятий информационные технологии используются не столь часто. Однако как показали современные исследования в области образовательных технологий, именно здесь лежат огромные резервы в повышении эффективности обучения.

Программное обеспечение интерактивной доски позволяет вовлечь всех студентов в активную работу на семинаре, позволяет студентам активно выполнять индивидуальные и групповые ролевые упражнения, а преподавателю, наряду с возможностью контроля и управления, предоставляются средства записи и протоколирования действий студентов для последующего анализа и комментирования.

Совместное использование единого гиперпространства обеспечивает возможность творческого сотрудничества преподавателя и студентов при обучении практическим навыкам. Важное место при этом отводится возможности обмена информацией между самими обучаемыми в контексте
изучаемого курса. Отмечается значительный рост эффективности обучения, когда курсант в процессе получения знаний, взаимодействует с другими курсантами, которые в свою очередь взаимодействуют с гипермедиа материалом курса.

При работе с интерактивной доской эффективно использовать компьютерные интерактивные модели, представляющие собой схемы, графики, имитации процессов и экспериментов, задания, игры, исходные параметры которых задаются пользователем.

Интерактивные компьютерные модели, реализованные с помощью интерактивной доски, позволяют:

– проводить необходимые лабораторные и практические работы в условиях отсутствия материально-технической базы для реального эксперимента;
– проводить необходимые работы с экспериментальными материалами, прямой контакт с которыми небезопасен или нежелателен;
– моделировать такие процессы и явления, для которых необходимо специализированное дорогостоящее оборудование и специальные лаборатории;
– визуализировать различные явления в динамике;
– изменять параметры объектов, свойств и масштабов модели, которые сложно технически реализовывать в реальном эксперименте.

Методика разработки занятий с использованием интерактивной доски

Как показывает опыт, наибольшие трудности при внедрении интерактивной доски в учебный процесс возникают при обучении преподавателей эффективному владению этим оборудованием. Большинство из проблем, с которыми сталкиваются преподаватели при создании электронного варианта учебного материала, связано с отсутствием достаточных навыков проектирования информационного пространства и пользовательского интерфейса, обеспечивающих создание эффективных структур, соответствующих новым возможностям представления информации.

Для эффективного проведения занятия с использованием интерактивной доски можно предложить следующий алгоритм его подготовки:

1. Определить тему, цель и тип занятия.
2. Составить временную структуру занятия, в соответствии с главной целью наметить задачи и необходимые этапы для их достижения.
3. Продумать этапы, на которых необходимы инструменты интерактивной доски.
4. Из резервов компьютерного обеспечения выбрать наиболее эффективные средства.
5. Рассмотреть целесообразность их применения в сравнении с традиционными средствами.
6. Отобранные материалы оцениваются во времени: продолжительность показа не должна превышать санитарных норм; рекомендуется просмотреть и прохронометрировать все материалы, учесть интерактивный характер материала.
7. Составляется временная развертка (поминутный план) занятия.
8. При недостатке компьютерного иллюстрированного или программного материала проводится поиск в библиотеке или Интернете или составляется авторская программа.
9. Разработка презентации.
При создании занятия с использованием интерактивной доски необходимо пользоваться определенными критериями отбора информации:
 а) содержание, глубина и объем научной информации должны соответствовать познавательным возможностям и уровне работоспособности студентов, учитывая их интеллектуальную подготовку и возрастные особенности;
 б) при отборе материала для зрительного ряда описания модели избегать дальних планов и мелких деталей;
 в) зрительный ряд и дикторский тест должны быть связаны между собой, создавать единный поток информации и подавать ее в понятно для студентов логической последовательности, порционно шаговым методом в доступном темпе, при этом дикторский текст должен быть четким и ясным;
 г) следует избегать больших текстовых фрагментов. Недопустимо использовать для чтения текста полосы прокрутки или кнопки перехода от экрана к экрану;
 д) выделять в текстах наиболее важные части.

Использование видеоконференций

Растущая доступность и значительное улучшение качества видеоконференц-связи создают условия для более широкого использования интерактивных видеоконференций в учебном процессе.

Видеоконференции позволяют повысить эффективность учебного процесса за счет:
 – привлечения к проведению лекций наиболее квалифицированных специалистов по рассматриваемой проблематике;
 – виртуального присутствия в учреждениях по профилю будущей специальности;
 – «эффекта присутствия» при демонстрации реальных явлений;
 – совместного участия в разрешении предъявляемых проблемных ситуаций, формировании управленческого решения.
Чаще всего видеолекции по сути практически не отличаются от традиционной лекции. Преподаватель-лектор, оставаясь за столом практически неподвижным в течение всей лекции, излагает учебный материал, сопровождая свой рассказ показом структурных схем, графиков, документальных фотографий и т. д. При этом слушатели имеют возможность задавать лектору вопросы.

Успех лекции во многом определяется тем, насколько свободно и непринужденно чувствует себя преподаватель перед объективом видеокамеры.

В традиционном учебном процессе существенным дополнением вербальной коммуникации являются невербальные средства общения:

- кинесика (от греч. kinesis – движение) – совокупность телодвижений (жестов, мимики), применяемых в процессе человеческого общения;
- паралингвистика (качество голоса, его диапазон, тональность);
- экстралингвистика (включение в речь пауз, смеха, пожалований и т. д.);
- проксемика (пространство и время организации процесса общения несут смысловую нагрузку, являясь компонентами коммуникативной ситуации);
- визуальное общение (контакт глазами).

Смысловое содержание сообщения при живом разговоре собеседников на 7 % передается вербально (словами), на 38 % – интонацией говорящего и более 50 % передается мимикой, жестами, позой «источника информации». Поэтому в видеолекции огромное методическое значение имеет правильная постановка речи.

Следует учитывать, что письменная и устная речь выполняют разные функции. Письменная речь, как правило, направлена на передачу более отвлеченного содержания. Она требует более систематического, педантичного, логически связного изложения. Грамматически правильное чтение диктором текста печатного учебного пособия оказывается обезличенным, сухим, «без сучка и задоринки», что приводит к сужению информационной избыточности, обычно имеющейся в аудиторной лекции и облегчающей понимание материала. Для преодоления рассматриваемого недостатка необходимо максимальное приближение к стилю живой разговорной речи, с постановкой риторических вопросов и обращений к слушателям. Определенная самобытность голоса и построения речи лектора, с возможными оговорками, поправками и паузами позволяет создать психоэмоциональный фон, на котором непроизвольно создаются ассоциативные маркеры («якоря»), облегчающие переход кратковременной памяти в долговременную. На рис. 11 представлен скриншот сеанса проведения видеолекции.
Таким образом, можно сформулировать следующие дидактические требования к видеолекции:

1. Во вводной части видеолекции должны быть поставлены цель и задачи изучения дисциплины (раздела), показаны ее связи с другими дисциплинами профессиональной подготовки, отмечены особенности изучаемого предмета (раздела).

2. Для лучшего усвоения материала видеолекция должна быть разделена на отдельные учебные вопросы.

3. При создании видеолекции используется как устная речь, так и условный язык графических изображений (статических и динамических иллюстраций). Следует помнить, что до 80% информации об окружающем мире человек получает через зрение. Поэтому не следует пренебрегать возможностью визуализации информации (схемы, графики, фотографии и т. д.).

4. Представление учебного материала не должно быть равномерным, монотонным. Как правило, в пределах одной темы можно выделять 4−5 акцентов, привлекающих внимание зрителя (используя эффект неожиданности, удивления, эмоционального оживления). Выделения желательно
располагать по нарастаанию эффекта, чтобы предыдущее впечатление не «маскировало» последующее действие.

5. В видеолекцию допустимо включать короткие видеофрагменты, как правило, продолжительностью не более 3–5 минут.

Компьютерное тестирование

Наряду с традиционными методами контроля знаний тестирование быстро становится привычной частью учебного процесса. Цель проведения экзаменов и другого контроля знаний в тестовой форме состоит в том, чтобы повысить объективность оценки уровня знаний при одновременном снижении затрат учебного времени. Всё больше преподавателей включают тестовый контроль знаний в свой методический арсенал.

Прежде всего, уточним что тест — это система заданий специфической формы, позволяющая формализовано измерить уровень обученности.

Тестовое задание — задание специфической формы, элемент теста, минимальная законченная составляющая единица теста [1].

Автоматизированный контроль знаний основан на использовании стандартизированных форм заданий.

Форма тестового задания представляет собой шаблон для ввода содержания задания, т. е.:
– формулировки задания,
– исходных данных,
– иллюстративного материала,
– вариантов ответа,
– данных для оценки степени правильности ответа.

Принято различать тестовые задания открытого и закрытого типа.

Задание открытого типа — задание без указания возможных вариантов ответа; испытуемому предлагается самостоятельно сформулировать и записать ответ или выполнить какое-либо действие в соответствии с заданием (например, нарисовать схему) [1].

Задания открытого типа подразделяются на задания с развернутым и кратким ответом. Первые подразумевают запись ответа в произвольной форме; такие задания нетехнологичны и используются редко. Оцениваются такие задания экспертами (автоматизация проверки невозможна). Задания с развернутым ответом — это единственная форма тестовых заданий, не используемая в автоматизированных (компьютерных) системах контроля знаний.

Более технологичны задания с кратким свободным ответом, на которые тестируемый должен записать ответ словом, словосочетанием или числом, например:
Прочтите отрывок из статьи экономиста Б. Д. Брукаса и напишите сокращенное название политики, о которой идет речь в тексте.
«Уже в марте 1922 г., через год после [ее] объявления, Ленин провозгласил, что отступление социализма должно быть остановлено и что он должен укрепиться на командных высотах экономической жизни, т. е. в ее централизованных секторах».
Ответ: ____________.
Эта форма задания наиболее близка к традиционной. Вероятность угадывания минимальна, методически цена самостоятельная формулировка ответа. Недостаток – сложность синтаксического (тем более – семантического) анализа ответа, невозможность в ряде случаев предусмотреть ввод учащимся различных синонимов, всех частично правильных ответов и т. п. Указанный тип заданий наиболее эффективен при проверке разного рода терминов, констант, дат.
Проверка заданий с кратким свободным ответом в отличие от заданий с развернутым ответом легко поддаётся формализации (отпадает необходимость в экспертах), а также автоматизации (т. е. может быть выполнена компьютерной программой без участия человека).
Значительно более привычны задания закрытого типа.
Задание закрытого типа – задание, содержание которого сопровождается несколькими вариантами ответа; испытываемому предлагается выбрать правильный ответ [1].
Прежде всего, рассмотрим задания с выбором одного правильного ответа. Эта форма задания интуитивно понятна студенту, ввод ответа требует минимального времени, процедура обработки ответа предельно проста. Пример:
Укажите тип смежных носителей информации, основанный на магнитной записи:
- дискеты;
- CD диски;
- DVD диски;
- Flash USB Drive.
Недостатки заданий с выбором одного правильного ответа – существенная вероятность угадывания правильного ответа, возможность запоминания неверных ответов. Заиклиивание исключительно на этой форме заданий нецелесообразно, так как случайное угадывание правильных ответов способно существенно повлиять на результат тестирования, нарушив достоверность педагогического измерения.
Тестовое задание с несколькими правильными ответами – задание, в котором правильных ответов может быть несколько [1].
Задания с выбором нескольких правильных ответов очень похожи на предыдущую форму тестовых заданий. Поэтому в инструкции для тестируемых или в самом задании необходимо указать на возможность выбора нескольких вариантов ответа, например:

Укажите все типы оптических сменных носителей информации:

- дискеты;
- CD диски;
- DVD диски
- HDD USB Drive;
- Flash USB Drive.

Эта форма заданий более информативна, дает возможность учесть частично правильные ответы. Следует отметить, что задания с выбором нескольких правильных ответов обладают достаточной стойкостью к случайному угадыванию правильного ответа: при выборе из пяти вариантов ответа вероятность угадывания менее 10 %.

Тестовое задание на установление правильной последовательности — задание, выполнение которого состоит в установлении правильной последовательности операций, действий, событий.

Тестируемому задается вопрос и дается набор готовых элементов. В его задачу входит расстановка этих элементов в правильной последовательности. Вероятность угадывания (при числе элементов более трех) не значима.

Объём памяти внешних запоминающих устройств возрастает в порядке:

- DVD;
- жесткий диск;
- гибкий диск;
- CD.

Задания на установление правильной последовательности специфичны, и в силу этого применимы не во всех ситуациях. Такие задания весьма результативны в тех предметных областях, где требуется четкое знание последовательности операций, алгоритма действий или взаимного расположение объектов.

Тестовое задание на соответствие (тестовое задание перекрестного выбора) — задание, при выполнении которого необходимо установить соответствие между элементами двух множеств (двух списков) [1].

Пример.

Установите соответствие:

ОБЛАСТЬ ЗНАНИЯ	УЧЕНЫЕ
1. математика | А) Сократ
2. философия | Б) Пифагор
В) Кант
Г) Гегель
Д) Эйлер
Е) Лагранж

Ответы: 1 – ___________, 2 – ___________.

Задание на соответствие информативно, т. к. содержит целую группу заданий с выбором правильного ответа. Вероятность угадывания (при числе элементов более трех, а также при разной длине списков) практически нулевая.

Выбор формы тестового задания во многом определяется спецификой содержания проверяемого материала, целевым назначением теста и личными предпочтениями составителя. Целесообразно учитывать, что включение заданий с несколькими правильными ответами, заданий на восстановление последовательности и соответствия, а также заданий с кратким свободным ответом в арсенал составителя теста содействует снижению вероятности случайного угадывания и повышению достоверности педагогических измерений.

Разработка теста

На первый взгляд всё просто: нужно лишь составить вопросы (задания) и варианты ответов, с чем легко справится любой преподаватель. К сожалению, это неверно. Составление тестов – это трудоемкая операция, требующая методической грамотности и опыта работы с тестами. Устранение субъективизма оценивания, автоматизация контроля знаний выдвигает более высокие требования к качеству заданий, чем традиционные формы контроля. Так, например, сделать хороший тест сложнее, чем провести хороший устный экзамен.

Основные ошибки в составлении теста:
– несоответствие целевому назначению теста;
– недостаточное количество заданий;
– некорректность формулировок;
– терминологические ошибки и неточности;
– неоднозначность вопросов и вариативность ответов;
– акцентирование на малозначимых фактах, усвоение которых может не отражать овладение всей системой формируемых знаний, умений, навыков;
– требование элементов интерпретации в ответах и т. п.

Чтобы не быть голословным, приведем два примера неудачных тестовых заданий.

Какой датой обозначено начало действия романа И. С. Тургенева «Отцы и дети»?

1) 1848 г.
2) 1859 г.
3) 1861 г.
4) 1862 г.

К какому из героев романа Булгакова «Мастер и Маргарита» могут быть отнесены слова эпиграфа?
1) Мастеру;
2) Маргарите;
3) Воланду.

Чтобы ответить, когда началось действие романа «Отцы и дети» или в каком году написана поэма «Двенадцать» с разбросом вариантов ответов один-два года, нужно обладать феноменальной памятью или заучить эти даты навзяч. Подобные задания нацелены на проверку знания малозначимых фактов, и весьма условно соответствуют целевому назначению текста – проведению единого государственного экзамена по литературе.

Некорректно спрашивать, к какому из героев романа Булгакова «Мастер и Маргарита» могут быть отнесены слова эпиграфа. Прежде всего эпиграф относится ко всему произведению в целом, а не к отдельному герою. Кроме того, мнение обучаемого может не совпадать с мнением авторов.

Приведенные выше задания взяты из официальных демо-версий единого государственного экзамена (ЕГЭ), утвержденных Департаментом общего образования Минобразования России, с официального сайта ЕГЭ www.ege.ru. Надо полагать, что задания составлены высококвалифицированными специалистами, успешно прошли рассмотрение и утверждены на самом высоком уровне.

Если уж тесты такого уровня несовершены, то трудно ожидать совершенства от тестов, создаваемых обычными преподавателями. Вместе с тем, избежать грубых ошибок не только можно, но и достаточно просто, если следовать следующим рекомендациям.

Итак, как сделать хороший тест?
1. Оценить целесообразность тестирования.
2. Выделить для этой работы достаточное количество времени.

Один из известных законов Мэrfи – «Всякая работа требует больше времени, чем вы думаете» совершенно справедлив в случае составления
теста. Жесткие временные ограничения (например, «завтра зачет в школе начинающих преподавателей» или «в четверг открытое занятие») препятствуют созданию качественного теста. С учетом загруженности учебной работой и другими обязательными мероприятиями на составление теста целесообразно отвести не менее 10 дней.

3. Четко определить целевое назначение теста – проверка готовности к занятию, контроль знаний по теме или разделу рабочей программы, итоговый контроль и т. д. Каждое задание следует мысленно проверять на соответствие целевому назначению.

4. Отобрать учебный материал, подлежащий тестовому контролю. Тестовым контролем должны быть охвачены все основные положения соответствующего учебного материала, знание которых обучающимися свидетельствует об успешном усвоении. Контролироваться должно как знание теории, так умение практического применения полученных знаний. Типичной ошибкой является перенасыщение тестов заданиями на формальное знание теоретических положений и отдельных фактов в ущерб заданию на решение задач.

5. Сформулировать тестовые задания. Основной принцип – содержательная правильность тестовых заданий. В тест включается только то содержание учебной дисциплины, которое является объективно истинным и поддаётся аргументации. Каждое задание теста опирается, как правило, на факт, правило, теорему, норму, закон или на апробированный в практике метод. Спорные точки зрения, вполне приемлемые в науке, не рекомендуется включать в содержание тестовых заданий. Тестовые задания обычно требуют определенных ответов, признаваемых в качестве точных и бесспорных. Кроме того, при тестировании, как правило, не предусматривается разъяснение формулировок заданий преподавателем.

Поэтому правильно сформулированное тестовое задание должно быть:

– легко понимаемым (формулировка задания должна быть понятна после первого прочтения, целесообразно использовать простые по синтаксической конструкции предложения);

– однозначным (не должно быть двусмысленности, не желательно использовать такие слова, как «иногда», «часто», «обычно» и т. п.);

– по возможности кратким (содержать минимум информации, необходимой для передачи смысла).

Для заданий открытого типа, которые предлагают обучающему самому записать одно или несколько слов (цифр или букв), обязательно следует учсть вариативность ответов.

Ориентировочное количество тестовых заданий:

для входного контроля – 10–15;
для контроля на занятии – 15–30;
для итогоового контроля – 30–60.
Общее количество тестовых заданий, как минимум, должно в 2–3 раза превышать количество заданий, предъявляемых в одном сеансе тестирования.

Время тестирования может определяться на основе:
– времени выполнения теста преподавателем (испытуемым выделяют в 3–5 раз больше);
– усредненных эмпирических данных выполнения отдельного задания из расчёта 0,5–2 минуты на одно задание. Согласно данным международных сравнительных исследований (IAEP, TIMSS) [15], принято следующее распределение времени на выполнение заданий различного типа: выполнение задания с выбором ответа в среднем требует до минуты, выполнение задания с кратким ответом – до 2 минут. Среднее время ответа испытуемого на одно тестовое задание не должно превышать 5 минут [10];
– данных пробного тестирования.

Данные пробного тестирования могут использоваться по-разному. Если скорость выполнения теста не имеет первостепенного значения – а это справедливо почти для всех учебных дисциплин – то жесткие временные рамки становятся препятствием для объективного измерения уровня подготовленности. В этом случае, как правило, принимается время, достаточное для полного прохождения теста абсолютным большинством испытуемых.

6. Апробация и доработка теста. После окончания разработки теста составителю рекомендуется:
– самостоятельно выполнить все тестовые задания (это позволит выявить и исправить различные случайные ошибки: опечатки, пропуск слов, несоответствие правильных и неправильных вариантов ответа и др., а также приблизительно оценить трудность теста);
– представить тест на суд своих коллег, преподающих ту же учебную дисциплину (как известно, ошибки со стороны виднее, можно получить ценные советы по совершенствованию теста).

Только реальное тестирование может определить восприятие контрольных вопросов учащимися. Перед первым для обучаемых тестированием необходимо разъяснить им порядок работы с применяемым программным средством. Представляется целесообразным запуск демонстрационного теста, что позволит в дальнейшем избежать технических ошибок.

К сожалению, от ошибок никто не застрахован. Поэтому после внедрения теста в учебный процесс работа над ним не заканчивается. Так, например, в случае несогласия с оценкой преподавателю рекомендуется вместе с обучаемым повторно рассмотреть спорные вопросы и указать на допущенные ошибки (или скорректировать оценку и исправить тест).

Для доработки теста также может использоваться накопительный статистический анализ по ответам на каждое тестовое задание. Следует обра-
тить особое внимание на задания с низким процентом правильных ответов. Анализ подобной статистики позволяет выявить недостаточно раскрытое в процессе обучения вопросы, а также некорректно сформулированные задания.

Разработка обучающей программы

Существует множество обучающих систем по самым различным предметам и большое количество средств их разработки. Однако пока обучающие программы не нашли достаточно широкого применения в учебном процессе. Основной причиной такого положения представляется высокая трудоемкость создания обучающих программ. Далеко не всегда преподаватель может воспользоваться готовой обучающей программой. Даже если подходящая по тематике программа имеется, она может не устраивать преподавателя:

– по содержанию,
– по последовательности и форме изложения материала,
– по виду обратной связи работы программы с результатами обучения и другим причинам.

Поэтому при кажущемся обилии обучающих программ очень мало шансов найти подходящую программу к конкретному занятию, которая соответствовала бы по содержанию, объему и глубине изложения учебного материала, а также методике проведения занятия. Следовательно, возникает необходимость в разработке средств создания обучающих программ, доступных преподавателю, умеющему работать на компьютере с документами, однако неисковому в программировании и других специфических областях информатики. Эти средства должны быть очень проницаемы в использовании, чтобы любой разработчик после краткого знакомства с интерфейсом программы мог самостоятельно работать с ней. Для этого предназначены специальные инструментальные среды, позволяющие создавать мультимедиа-приложения без написания собственно программного кода.

Имеющиеся в настоящее время инструментальные средства (ToolBook Instructor компании SumTotal Systems, США; Hyperstudio, Великобритания; eAuthor, eLearning компании HyperMethod, Россия и др.) различны по спектру предоставляемых возможностей и достаточно сложны для освоения по причине нестандартности. Кроме того, это платное программное обеспечение. Однако, как показывает практика, в большинстве случаев требуется разрабатывать сравнительно незатейливые multimedia-приложения «презентационного» характера, интерактивность которых сводится лишь к реализации произвольной (неинтегрированной) траектории просмотра и использования системы контроля знаний. В этом случае вполне достаточно более простых средств, например, входящего в комплект пакета Microsoft Office приложения PowerPoint, рассматриваемого в этом слу-
чае уже не просто как система для подготовки презентаций, а как хотя и простая, но полноценная инструментальная среда.

PowerPoint широко используется в учебном процессе для создания мультимедийного сопровождения лекций (докладов, защит курсовых и дипломных проектов и др.). Однако в большинстве случаев презентации представляют собой простой набор слайдов, богатые функциональные возможности программы PowerPoint практически не используются.

Основные возможности PowerPoint, обусловившие выбор этого программного средства в качестве среды для разработки обучающих программ, заключаются в следующем:

– PowerPoint – мощное средство для создания мультимедийных презентаций, объединяющих самые различные мультимедийные элементы (компьютерную графику, анимацию, видео и звуковые материалы) в единое целое;
– легкость освоения (многие преподаватели имеют опыт работы с PowerPoint; программа имеет обычный интерфейс Microsoft Office и снабжена развитой справочной системой на русском языке, что упрощает её освоение; при желании несложно найти дополнительную литературу на русском языке);
– гибкость настройки;
– легкость корректировки содержания;
– интерактивность (имеется возможность изменить ход презентации, использовать гиперссылки для вывода дополнительной информации, вызывать внешние программы и т. д.);
– встроенный язык программирования Visual Basic for Applications, с помощью которого можно расширить возможности PowerPoint (сразу условимся, что преподавателю не обязательно изучать программирование).

Дополнительно к стандартно предполагаемому линейному порядку показа слайдов от первого к последнему предоставляется возможность использования гиперссылок для перехода на любой слайд, открытия документов и веб-страниц, запуска программ. Это позволяет реализовать разветвляющийся сценариев, а также расширить спектр возможностей за счет вызова внешних приложений.

Мно́гие учебные курсы сертификата «1С: Образование», а также компании «Новый Диск» и «Кирилл и Мефодий» выполнены в виде аналога презентаций PowerPoint. В последней версии ToolBook Instructor компании SumTotal Systems добавлен конвертер для перевода содержания презентаций PowerPoint во внутренний формат учебного курса. Всё это является косвенным подтверждением пригодности PowerPoint в качестве среды для создания обучающих программ. Дополнительным преимуществом можно считать отсутствие финансовых затрат – Microsoft Office (а вместе с ним и PowerPoint) является стандартным программным обеспечением образовательных учреждений. Поэтому использование в учебном процессе про-
грамммы Microsoft PowerPoint, как правило, не сопровождается дополнительными расходами.

Качество работы обучающей программы во многом определяется тем, насколько полно и достоверно она обеспечивает выявление и измерение уровней знаний у обучаемых, т. е. определение таких характеристик усвоения знаний, как их полнота, осознанность, правильность, точность, умение применять на практике.

Контроль знаний в обучающей программе – главное звено обратной связи, которое
– создаёт основу для управления работой обучающей программы;
– даёт возможность обучаемому адекватно оценить свои успехи;
– позволяет преподавателю выявлять характерные ошибки для их последующего разбора с группой обучаемых, а также студентов, нуждающихся в дополнительной помощи.

Так как некоторые функции системы автоматизированного обучения (контроль усвоения материала, регистрация результатов) программой PowerPoint не реализуются, то представляется целесообразной некоторая «доработка» PowerPoint для придания ему свойств полноценной инструментальной среды создания компьютерных обучающих программ.

Одним из вариантов такой доработки может служить разработанная одним из авторов этого пособия программа компьютерного тестирования Assistent (с программой можно ознакомиться на сайте www.asksystem.narod.ru).

Входящие в состав дистрибутива программы Assistent макросы VBA и специальная динамическая библиотека обеспечивают:
– запуск тестов, соответствующих определенным фрагментам учебного курса;
– управление процессом обучения;
– накопление и просмотр результатов тестирования;
– сбор данных для статистического анализа;
– дополнительные возможности навигации в обучающей программе.

Рекомендуемая структура обучающей программы:

1) вступительная часть (мотивационная и организационно-практическая). Ее цель – вызвать мотив деятельности (зачем это надо) и объяснить порядок работы;

2) основная часть, предназначенная для формирования определенных знаний, умений и навыков, состоит из шагов, разделов или циклов и обеспечивает постепенное обучение, закрепление, усвоение учебного материала, самоконтроль и самокоррекцию. Шаг включает информацию, задание для операции, контроль и оценку выполнения задания в данном шаге. При верно выполненном задании программа направляет обучаемого к следующему шагу, целью которого может быть закрепление данного материала.
или умения или информация о новом материале. При неточно или неверно выполненнном задании следует комментарий, разъяснение и предлагаются выполнять данное или подобное задание до тех пор, пока он не усвоит соответствующую информацию;

3) заключительная часть, предназначенная для обобщения работы.

Таким образом, в обучающей программе программируется не только учебный материал, но и усвоение, т. е. понимание и запоминание этого материала, а также и контроль формирования знаний, умений, навыков.

Фактически, для создания обучающей программы следует составить презентацию PowerPoint и тест Assistant. Взаимодействие между программами осуществляется автоматически (разработчику обучающей системы не требуется что-либо изменять в этих компонентах). Структурная схема обучающей программы на основе презентации Microsoft PowerPoint представлена на рис. 12.

Рис. 12. Структурная схема обучающей программы на основе презентации Microsoft PowerPoint

(сплошной линией изображен рекомендуемый порядок работы обучаемого;
пунктирной – возвращение к началу раздела в случае ошибки при тестировании;
штрихпунктирной линией – возможность перехода на любой слайд)
Для обеспечения совместной работы PowerPoint и Assistent презентация должна быть создана на основе входящего в состав дистрибутива программы Assistent шаблона Шаблон.pot (есть и другой способ, несколько более сложный, он описан в справочной системе).

Далее презентация наполняется учебным материалом. Желательно, чтобы материал был структурирован, т. е. поделен на разделы. После формирования содержания следует установить Пароль для разрешения записи (меню Сервис – Параметры – Безопасность), а также сохранить работу в виде демонстрации:

1) в Microsoft Office 2003 командой Файл – Сохранить как – Демонстрация (*.pps);

2) в Microsoft Office 2007 указать тип файла Демонстрация PowerPoint с поддержкой макросов (*.ppsm).

Это упростит запуск обучающих программ – достаточно двойного клика на значке файла.

Редактирование теста производится в обычном порядке, за исключением того, что:
- имя теста должно совпадать с именем презентации PowerPoint;
- тест должен находиться в папке с презентацией PowerPoint;
- последовательность тестовых заданий должна соответствовать структуре обучающей программы, т. е. сначала записываются задания по первому разделу обучающей программы, затем – по второму разделу и так далее;
- в параметрах теста требуется указать и параметры работы PowerPoint (для каждого раздела: номер слайда, из которого вызывается тест, количество заданий, номер слайда, к которому следует перейти при ошибочном ответе, заголовок темы).

Создаваемые на основе шаблона Шаблон.pot обучающие программы имеют широкие возможности навигации для перехода к нужному слайду.

Стандартные средства навигации Microsoft PowerPoint:
- контекстное меню (команды Далее, Назад, Последний просмотренный, Перейти к слайду);
- управляющие кнопки (показаны правой нижней части рис. 13);
- гиперссылки (на рис. 13 гиперссылками являются надписи с названиями разделов).

Дополнительно для перехода к нужному слайду можно использовать список содержания обучающей программы (рис. 13). Разработчику обучающей программы не требуется вручную формировать этот список, так как он автоматически формируется заложенным в Шаблон.pot программным кодом VBA.

Следует отметить, что разработчики, знакомые с программированием, могут существенно расширить функциональность обучающих программ за счет использования поддерживаемого программой Microsoft PowerPoint...
языка программирования Visual Basic for Application. На слайдах презентации можно разместить собственные элементы управления, записав соответствующий программный код обработки событий. Средствами Visual Basic for Application возможно также создание новых форм (собственных окон). Такой подход повышает наглядность и интерактивность обучающей программы.

Рис. 13. Список содержания обучающей программы

Результаты работы обучаемого хранятся в памяти обучающей программы, и в любой момент могут быть просмотрены с помощью кнопки Результат (рис. 14). Это позволяет преподавателю контролировать процесс обучения.

Обучающие программы на основе презентаций PowerPoint прошли аттестацию, внедрены в учебный процесс и достаточно эффективно используются.
Рис. 14. Просмотр результатов работы с обучающей программой

На кафедре математики и информатики ФГОУ ВПО ВСИ МВД России накоплен большой опыт по созданию и внедрению в учебный процесс обучающих компьютерных программ, что позволяет сформулировать следующие рекомендации.

1. Использование обучающих компьютерных программ наилучшим образом оправдывает себя:
 – в тех разделах учебных дисциплин, где требуется алгоритмизация процесса обучения, направленная на формирование у обучающихся умений и навыков;
 – когда предъявляются высокие требования к точности знаний и выполнения операций;
 – для развития у обучаемых навыков алгоритмизации решения задач и формирования на этой основе логического системного мышления.

2. Разработанную методику целесообразно применять для организации занятий по разным формам обучения – очной, заочной, дистанционной.

3. Применение методики автоматизированного обучения эффективно только тогда, когда оно органически сочетается с традиционными методами.
4. При разработке обучающих и контролирующих программ по конкретным дисциплинам следует использовать:
 – опыт высококвалифицированных педагогов;
 – данные педагогической психологии;
 – знание дидактических требований, предъявляемых к компьютерным обучающим программам.

5. При составлении обучающих программ следует учитывать дидактические принципы, предъявляемым ко всем вузовским пособиям вообще, а именно:
 – научность (создание на основе актуальных научных данных);
 – доступность (расчет на определенный уровень подготовки);
 – систематичность;
 – связь с практикой (практическая направленность);
 – сознательность и активность обучаемых; наглядность;
 – прочность усвоения;
 – индивидуализация обучения.

6. При составлении обучающих программ следует учитывать принципы программированного обучения:
 – наличие поддающейся измерению цели учебной работы и алгоритма достижения этой цели;
 – расчлененность учебной работы на шаги, связанные с соответствующими дозами информации, которые обеспечивают осуществление шага;
 – завершение каждого шага самопроверкой и возможным корректирующим воздействием;
 – использование автоматического устройства;
 – в достаточных и доступных пределах индивидуализация обучения.

7. При разработке обучающих и контролирующих программ необходимо учитывать психофизиологические закономерности восприятия информации с экрана дисплея. Очень важно вызвать интерес к работе и поддерживать его во время выполнения всей обучающей программы. Как показывает практический опыт, выполнение обучающей программы должно длиться не более 45 мин. В противном случае наблюдаются рассеивание внимания, спад активности, утомление, утрата интереса к работе.

8. Мониторы вредят здоровью, так как вызывают утомление, снижение остроты зрения, что приводит к развитию близорукости. Самой трудоемкой для человеческого зрения является работа с текстами. Если край не резок, глаз постоянно ищет резкости. Не находя, быстро устает. Подобное зрительное утомление требует длительного восстановления. Недостаточная частота смены кадров может оказать влияние на центральную нервную систему. Поэтому рекомендуется:
— избегать монотонности заданий, учитывая смену деятельности по ее уровням: узнавание, воспроизведение, применение;
— учитывать фактор памяти (оперативной, кратковременной и долговременной). Нельзя контролировать то, что введено еще на уровне оперативной и кратковременной памяти.
— чтобы не ставить студентов в дискомфортные условия (при короткой или длительной паузе), следует помнить, что при обучении не рекомендуется ограничивать паузу для выполнения работы, а паузы для контроля выполнения задания можно и нужно ограничить.

Практика применения обучающих программ свидетельствует, что их использование по сравнению с традиционным обучением, обладает следующими преимуществами:
— позволяет более качественно осуществлять предварительную логическую обработку изучаемого материала;
— обеспечивает управление обучением каждого студента за счет непрерывно действующей обратной связи;
— развивает умения и навыки самообучения и самоконтроля;
— даёт возможность увеличить объем сообщаемой учебной информации за счет более тщательного ее отбора и группировки;
— дифференциация темпа обучения с учетом индивидуальных способностей и психологических особенностей личности каждого обучаемого.

Эффективность определяется простотой разработки обучающей программы в сочетании с богатыми функциональными возможностями, а также достаточной обоснованностью оценки знаний (тесты могут использоваться не только в составе обучающей программы, но и отдельно от неё, обеспечивая, таким образом, контроль знаний в рамках материала обучающей программы).

Предложенный метод создания систем автоматизированного обучения на основе Microsoft PowerPoint:
— вполне доступен для разработчика (преподавателя), который не является специалистом в программировании и других специфических областях информатики;
— позволяет создавать полнофункциональные мультимедийные обучающие программы;
— обеспечивает контроль усвоения учебного материала и регистрация результатов работы обучаемых;
— даёт возможность создавать сложные информационные системы с помощью технологии гиперссылок;
— не требует каких-либо материальных затрат (пакет программ обработки деловой информации Microsoft Office установлен на компьютерах абсолютного большинства преподавателей; регистрация

Технология создания обучающих программ на базе презентаций даёт возможность каждому преподавателю выйти на новый качественный уровень преподавания и реализовать свои творческие возможности. Применение этой технологии в обучении способно повысить интерес студентов к учебному процессу и активизировать как самостоятельную работу студентов, так и учебно-методическую работу преподавателей.
ЗАКЛЮЧЕНИЕ

Для достижения положительного эффекта от внедрения современных технических средств обучения необходима профессиональная компетентность профессорско-преподавательского состава в области использования современных мультимедийных средств. В данном пособии изложена методологическая основа формирования такой компетентности. Пособие может быть использовано как для самостоятельной работы преподавателей, так и для организации занятий по повышению педагогической квалификации.

Современные мультимедийные технологии непрерывно совершенствуются, а технические характеристики мультимедийного оборудования – постоянно улучшаются. Понимая это, авторы стремились строить повествование таким образом, чтобы издание сохраняло актуальность длительное время.

В формировании компетентности педагога в области использования современных информационных средств в образовательной деятельности большую, во многом определяющую роль имеет систематическая самостоятельная работа по подготовке и проведению занятий с применением мультимедийных технологий. В ходе практического овладения мультимедийными образовательными технологиями преподаватель непременно столкнётся с определёнными затруднениями. К сожалению, работа по внедрению новых информационных технологий в учебный процесс настолько многогранна, что все её аспекты в рамках одного пособия рассмотреть невозможно.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК
34. Неттоп / Википедия [Электронный ресурс]. – URL : https://ru.wikipedia.org/wiki/%D0%9D%D0%B5%D1%82%D1%82%D0%BE%D0%BF.
ПРОВЕДЕНИЕ УЧЕБНЫХ ЗАНЯТИЙ
С ПРИМЕНЕНИЕМ
МУЛЬТИМЕДИЙНОЙ ТЕХНИКИ

Методические рекомендации

Редактор Л. В. Докукина
Компьютерный набор А. В. Данеев

Подписано в печать 03.08.16.
Уч.-изд. л. 4,27.
План 2016 г.